
U.S.N.A. --- Trident Scholar project report; no. 342 (2006)

USING NON-ORTHOGONAL IRIS IMAGES FOR IRIS RECOGNITION

by

MIDN 1/C Ruth Mary Gaunt, Class of 2006
United States Naval Academy

Annapolis, MD

__
(signature)

Certification of Adviser’s Approval

Assistant Professor Robert W. Ives
Electrical Engineering Department

__

(signature)

(date)

Professor Delores M. Etter

Electrical Engineering Department

__
(signature)

 (date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research & Scholarship

__

(signature)

(date)

USNA-1531-2

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
5 May 2006

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
 Using non-orthogonal iris images for iris recognition

6. AUTHOR(S)
 Gaunt, Ruth Mary, 1984-

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
342 (2006)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT The iris is the colored portion of the eye that surrounds the pupil and controls the amount of light that can enter the eye. The variations
within the patterns of the iris are unique between eyes, which allows for accurate identification of an individual. Current commercial iris recognition algorithms
require an orthogonal image of the eye (subject is looking directly into a camera) to find circular inner (pupillary) and outer (limbic) boundaries of the iris. If the
subject is looking away from the camera (non-orthogonal), the pupillary and limbic boundaries appear elliptical, which a commercial system may be unable to
process. This elliptical appearance also reduces the amount of information that is available in the image used for recognition. These are major challenges in
non-orthogonal iris recognition. This research addressed these issues and provided a means to perform non-orthogonal iris recognition. All objectives set forth
at the start of this project were accomplished. The first major objective of this project was to construct a database of non-orthogonal iris images for algorithm
development and testing. A collection station was built that allows for the capture of iris images at 0° (orthogonal), 15°, 30°, and 45°. During a single collection
on an individual, nine images were collected at each angle for each eye. Images of approximately 90 irises were taken, with 36 images collected per eye. Sixty
irises were evaluated twice, resulting in a total of almost 7100 images in the database. The second major objective involved modifying the Naval Academy’s
one-dimensional iris recognition algorithm so it could process non-orthogonal iris images. An elliptical-to-circular (affine) transformation was applied to the non-
orthogonal images to create circular boundaries. This permitted the algorithm to be run as designed, with this modified algorithm used in the recognition testing
phase of the project. To evaluate the performance of the recognition algorithm and the feasibility of nonorthogonal recognition, rank-matching curves were
generated. In addition, the accuracy of the database collection was evaluated by analyzing the iris boundary parameters of the nonorthogonal irises. MATLAB®
software and the Naval Academy’s biometric signal processing laboratory equipment were used to analyze the data and to implement this research,
respectively.

15. NUMBER OF PAGES
90

14. SUBJECT TERMS iris recognition ; iris images ; non-
orthogonal recognition ; biometric signal processing

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

1

Abstract:

 The iris is the colored portion of the eye that surrounds the pupil and controls the amount

of light that can enter the eye. The variations within the patterns of the iris are unique between

eyes, which allows for accurate identification of an individual. Current commercial iris

recognition algorithms require an orthogonal image of the eye (subject is looking directly into a

camera) to find circular inner (pupillary) and outer (limbic) boundaries of the iris. If the subject

is looking away from the camera (non-orthogonal), the pupillary and limbic boundaries appear

elliptical, which a commercial system may be unable to process. This elliptical appearance also

reduces the amount of information that is available in the image used for recognition. These are

major challenges in non-orthogonal iris recognition. This research addressed these issues and

provided a means to perform non-orthogonal iris recognition. All objectives set forth at the start

of this project were accomplished.

 The first major objective of this project was to construct a database of non-orthogonal iris

images for algorithm development and testing. A collection station was built that allows for the

capture of iris images at 0˚ (orthogonal), 15˚, 30˚, and 45˚. During a single collection on an

individual, nine images were collected at each angle for each eye. Images of approximately 90

irises were taken, with 36 images collected per eye. Sixty irises were evaluated twice, resulting

in a total of almost 7100 images in the database.

 The second major objective involved modifying the Naval Academy’s one-dimensional

iris recognition algorithm so it could process non-orthogonal iris images. An elliptical-to-circular

(affine) transformation was applied to the non-orthogonal images to create circular boundaries.

2

This permitted the algorithm to be run as designed, with this modified algorithm used in the

recognition testing phase of the project.

 To evaluate the performance of the recognition algorithm and the feasibility of non-

orthogonal recognition, rank-matching curves were generated. In addition, the accuracy of the

database collection was evaluated by analyzing the iris boundary parameters of the non-

orthogonal irises. MATLAB® software and the Naval Academy’s biometric signal processing

laboratory equipment were used to analyze the data and to implement this research, respectively.

3

Acknowledgments:

Thank you to the following individuals who have given so much of their time to help

contribute to the success of this project:

Dr. Robert Ives, Electrical Engineering Department, USNA – Primary Project Adviser

Dr. Delores Etter, Electrical Engineering Department, USNA –Secondary Project Adviser

Dr. Lauren Kennell, Electrical Engineering Department, USNA-Research Asst. Professor

LT Robert Schultz, USN, Electrical Engineering Department, USNA

Mr. Jerry Ballman, Electrical Engineering Department, USNA- Laboratory Technician

Mr. Michael Wilson, Electrical Engineering Department, USNA – Laboratory Technician

Mr. Jeffery Dunn, National Security Agency – Chief, R3B

Dr. David Murley, National Security Agency – Lead Scientist, R3B

Mr. Robert Kirchner, National Security Agency – General Engineer, R3B

Mr. David Smith, Science Application International Corporation – Laboratory Technician

Ms. Janice Atwood, Booz Allen Hamilton– National Security Agency Liaison

Dr. James Matey, Sarnoff Corporation

Trident Scholar Committee Members

4

Table of Contents:

List of Figures 6

List of Tables 8

I. Introduction 9

II. Background 11

III. Previous Research of Partial Iris Recognition 14

IV. Project Description 15

V. Database Construction 16

VI. Non-Orthogonal Iris Image Preprocessing 19

VII. Elliptical-to-Circular Coordinate Transformation 20

VIII. Direct Ellipse Unwrapping 23

IX. Affine Transformation 23

X. Modification of 1-D Algorithm 24

XI. Determining Accuracy of Database Collection 27

XII. Algorithm Performance 29

XIII. Conclusions 34

XIV. Future Work 35

XV. Works Cited 36

XVI. Works Consulted 36

XVII. Appendices 38

 Appendix A: Division of Work 39

 Appendix B: MATLAB Code 40

5

 Appendix C: Experimental Data 74

 Appendix D: Publications 79

6

List of Figures:

Figure 1: Collage of Nine Different Iris Images.

Figure 2: A Non-Orthogonal (Off-Axis) Iris Image.

Figure 3: Iris Recognition Process.

Figure 4. Rectangular-to-Polar Coordinate Transformation.

Figure 5. Partial Iris Recognition Testing.

Figure 6: Three examples of Partial Iris Images.

Figure 7: Non-Orthogonal Iris Image Collection Station.

Figure 8: Graphical User Interface for Iris Collection.

Figure 9: Database Images from Each Non-Orthogonal Angle.

Figure 10: Detection of Elliptical Pupillary and Limbic Boundaries.

Figure 11: Ellipses with Rotation and Semi-Major and Semi-Minor Axes.

Figure 12: Preprocessing GUI.

Figure 13: Polar Transformation of Transformed Ellipse.

Figure 14: Direct Unwrapping of Concentric Ellipses.

Figure 15: Poor Result for Direct Ellipse Unwrapping.

Figure 16: Affine Transformation.

Figure 17: Non-Orthogonal Template Generation.

Figure 18: 1-D Iris Template.

Figure 19: Failed Non-Orthogonal Template Generation.

Figure 20: Analysis of Non-Orthogonal Iris Image Database.

Figure 21: Rank-Matching Curve for 1-D Orthogonal Iris Recognition.

7

Figure 22: Rank-Matching Curve for Orthogonal Enrollment Templates.

Figure 23: Rank-Matching Curve for 15° Enrollment Templates.

Figure 24: Rank-Matching Curve for 30° Enrollment Templates.

Figure 25: Rank-Matching Curve for 45° Enrollment Templates.

Figure 26: Rank-Matching Curve for Mixed Enrollment Templates.

8

List of Tables:

Table 1. Iris Data Used for Database Analysis.

9

Figure 1. Collage of nine different iris images.

<http://www.cl.cam.ac.uk/users/jgd1000/iriscollage.jpg>

I. Introduction

Biometrics is the science that uses the distinct physical or behavioral traits of individuals

to positively identify them. A wide variety of traits can be used, including the fingerprint, iris

(see Fig. 1), face, hand geometry, voice, and even gait. Algorithms are developed to measure

and quantize these various characteristics so they can be compared to a database of stored

information in order for recognition to occur. This eliminates the need for passwords and

personal identification numbers, which are easier to spoof than an individual’s biometric

information. Application of biometric technology increases confidence that only those people

who are authorized to gain access to a particular resource or secure facility are able to do so.

 Two of the major applications of biometrics are verification and identification.

Verification is determining if individuals are who they say they are (a one-to-one comparison),

and identification is determining if an individual is one of a number of known people in a

10

database (a one-to-many comparison), usually to allow access to a secure facility or network [2].

In addition to verification and identification, another important application is creating a

“watchlist” or database of individuals of interest (e.g. known felons or terrorists) and scanning a

high traffic area (such as national borders or airports) in the hopes of detecting one of the

individuals on the list if they pass through (a many-to-many comparison). This is the most

complex application of biometrics because it requires collecting biometric data on each person

passing a “checkpoint” and comparing their features to all those on the watchlist: this can

involve very large databases and many comparisons [2].

 Another reason why the “watchlist” requires such a complex algorithm for identifying

individuals is that the large-area scanning is done typically under covert conditions, where the

subjects do not know that they are being observed [2]. At the present time, most biometric

identification occurs when a subject knowingly approaches a biometric data collecting device,

such as an iris or fingerprint scanner, and purposely presents the data necessary for identification,

whether it be staring straight into a camera from a distance of only several inches or placing a

finger on a fingerprint scanner. Currently, the data collection takes a noticeable amount of time

as well, so the subject must also keep the observed biometric in proximity to the sensor until

identification is completed. Once the biometric is collected, it also takes time for the collected

data to be processed and compared to the database before a decision is made.

 Today’s biometrics applications require a cooperative subject and many controlled

variables (such as proper illumination and distance to the sensor) for positive identification of an

individual to occur. Decreasing the number of controlled variables requires significantly more

complex algorithms. In the case of iris recognition, one of the variables that cannot be controlled

11

Figure 2. A Non-Orthogonal (Off-Axis) Iris Image.

during covert observation is

whether the collected image is

orthogonal (eye looking directly

into the camera) or non-

orthogonal (off-axis) to the

camera, as well as the orientation

from an off-axis angle. Positive

identification based on non-

orthogonal iris images (see Fig. 2) is the problem that has been investigated as a part of this

project. This includes development of a database of various off-axis iris images taken from

different angles and development of an algorithm to match an off-axis iris to an iris in the

database.

II. Background

The iris is the only internal human organ that can be observed from the external

environment, which is one reason why the iris is such a popular biometric. It is an area of tissue

that lies behind the cornea and is responsible for controlling the amount of light that is able to

enter the pupil as well as determining the eye color of an individual [3]. Iris pigmentation is

caused by melanin, the same material that causes pigmentation in the skin [3]. Brown eyes are

colored with eumelanin, and blue and green eyes are colored with pheomelanin [3].

Besides the functional capability of the iris, it has distinct physical features which are

unique to each individual. In fact, a person’s right and left irises do not share the exact same

physical characteristics [3]. Iris patterns are determined by the four layers that make up the iris,

12

Iris Recognition Process

1. Iris Capture

2. Iris Preprocessing

3. Iris Template Generation

4. Comparison

5. Decision

Iris Recognition Process

1. Iris Capture

2. Iris Preprocessing

3. Iris Template Generation

4. Comparison

5. Decision

Figure 3. Iris Recognition Process.

including the anterior border layer, the stroma, the dilator pupillae muscle, and the posterior

pigment epithelium [3]. The combination of these four layers produces striations, freckles, pits,

filaments, rings, and dark spots in addition to pigmentation [3]. An iris’s patterns stabilize by the

time a person is one year of age and remains constant throughout the person’s lifetime unless

damage to the eye occurs that would change the iris’s unique patterns [3]. It is these patterns that

are measured and quantified in an iris recognition system. These patterns tend to stand out more

under near-infrared (NIR) illumination (approximately 790 nm wavelength), so most iris systems

use an NIR camera.

The process of iris recognition can be broken down into five distinct steps that each

requires special hardware or an algorithm to perform its function (see Fig. 3). The first step is to

acquire an image of the iris. This is done with a NIR camera [4]. A frame grabber board can be

used to capture a frame from the live video and bring it into a computer for further processing.

The frame grabber serves as an interface between the analog video source and the PC being used

during the collection process.

The next step of iris recognition is the

preprocessing of the iris [4]. Since the iris

and pupil are approximately circular in shape

(for an orthogonal image), this includes

detecting the assumed circular pupil and

converting the iris image from rectangular to

polar coordinates (with the center of the pupil

as the origin) so that the limbic (outer) boundary is virtually horizontal (see Fig. 4) [5]. Effects of

13

Figure 4. Rectangular-to-polar coordinate transformation.

glare and eyelashes are then accounted for by determining if any pixel values are outliers and

removing them [5]. In addition, iris size can vary greatly due to the amount of light in the

environment, which causes the pupil to constrict or dilate as the image is captured, and can also

be affected by the distance from a person’s face to the camera [5]. The preprocessing of the iris

accounts for the iris size issues by normalizing the iris to a constant distance (number of pixels)

between the pupillary and limbic boundaries, typically between 55 and 70 pixels [5]. Once the

iris pixels are found, the rest of the image is discarded.

The third step in the iris recognition process is the generation of a method to store iris

data in the database that offers an efficient and accurate way to identify individuals. This is

usually called a “template” [4]. One method to do this was published by Du et al [5], in which

local texture patterns (LTPs) are produced in order to eliminate any grayscale variation in the

image due to different illumination conditions. Iris pixel values are replaced by LTP values to

create an LTP image. Next, each row of pixels in the LTP image is then averaged by the iris

template generation process in order to create a one-dimensional (1-D) template for a particular

iris image. Since the top and bottom three rows (corresponding to the area of the iris closest to

the pupil and farthest from the pupil, respectively) of the LTP generally are noisy, due to

Original Iris Image

Rectangular-to-Polar
Coordinate Transformation

Boundary of pupil/iris

Lower eyelid
& eyelashes

Center of pupil

Upper eyelid &
eyelashes

glare

Image in polar coordinates

130 rows x 200 columns

Boundary of pupil/iris

Lower eyelid
& eyelashes

Center of pupil

Upper eyelid &
eyelashes

glare

Image in polar coordinates

130 rows x 200 columns

14

Figure 5. Partial Iris Recognition Testing.

inaccuracies in the actual detection of the boundaries, they are not considered when creating the

iris template. In order for an iris to be identified, it must be enrolled in the database system,

which usually requires multiple images of the same iris to be processed into an enrolled template

and stored in the database.

Comparison of the iris templates in the

database to the template produced by the

presented iris is the next step in iris recognition

[4]. In order to compare these templates in the

1-D algorithm, the Du measure is used [5].

This measurement computes the similarity of

two 1-D templates (vectors), and takes into

account the magnitude difference between the

two templates and the angle between the two

templates as though they were multi-dimensional vectors. The smaller the Du measure, the

closer the two templates are to each other.

Finally, after the presented iris template is compared to the iris templates in the database,

a decision must be made from the results of the comparison [4]. This system outputs the closest

n matches from the database as calculated by the smallest n Du measurements (n is chosen by the

user) [5].

 III. Previous Research of Partial Iris Recognition

While non-orthogonal iris recognition is not currently a viable means of recognition, Du et

al. tested the 1-D recognition algorithm to see if recognition would work with just portions of an

15

Figure 6. Examples of Partial Iris
Images.

orthogonal iris (see Fig. 5) [7]. It was found that partial iris

recognition can work (with lower recognition performance),

and the results show how likely a person is of being

recognized when only a certain percentage of the iris is being

used for recognition. The Institute of Automation, Chinese

Academy of Sciences (CASIA) database (768 images of 108

irises) and the USNA orthogonal database (approximately

1500 images) were used to test the feasibility of partial iris

recognition. The results show that when only 50% of the iris

is being used for recognition, there is a 50% chance that the

correct iris is ranked as the top choice for recognition and an

80% chance that it is ranked as one of the top five closest

matches [7]. These results make it reasonable to assume that

non-orthogonal iris recognition will achieve similar results because it has the same problem of

not having the entire iris available for template generation and comparison.

IV. Project Description

Despite its high recognition rate, one of iris recognition’s major weaknesses is that it requires

that the users be cooperative when making sure their eye is close enough to the camera and is

still enough for a high quality iris image to be collected. In fact, current commercial systems

require the iris to be orthogonal (or nearly so) to the camera, since their recognition algorithm

must first detect the pupil, which is assumed to be a circle. This is only the case if the eye is

looking directly at the camera lens. This makes it difficult or impossible for identification to

16

Figure 7. Non-Orthogonal Iris Image Collection
Station.

occur if the image is taken from an off-axis angle (see Fig. 6). The main purpose of this project

has been to create a database of iris images taken from different off-axis angles (0°, 15°, 30°,

45°) using a near-infrared camera and to use these images to develop an algorithm to correctly

identify an individual when presented with an off-

axis image of the iris.

One of the problems with non-orthogonal iris

recognition is that when a person is not looking

directly into the camera, the entire iris is not

visible in the image because the iris is actually

three-dimensional. Although the inner and outer

boundaries of the iris can be located and the iris

pixels can be extracted, information is missing in

non-orthogonal iris images that is present in

orthogonal images where all of the iris is visible.

In order to complete the recognition algorithm, a procedure for the manipulation of the iris pixels

in partial iris images is required in order achieve success in recognizing a individuals from their

iris patterns when they are not staring directly into the camera.

V. Database Construction

In order to accurately collect non-orthogonal iris images at known orientation angles, a

collection station has been built so the user’s head remains stationary and the iris camera moves

around the user’s head (see Fig. 7).

17

Figure 8. Graphical User Interface for Iris Image
Collection.

The database of non-orthogonal iris images contains images taken at four known orientation

angles: 0° (orthogonal), 15°, 30°, and 45°. First, the user places his or her chin in the chin rest so

that the head remains stationary throughout the collection process. The chin rest can be raised

and lowered so that no matter what the proportions of a person’s face are, the eye can always be

positioned to be in the center of the camera lens. Two thin metal rods are placed at the opposite

end of the collection station for the user to focus on so that the only angle variation that occurs

during the collection process is due to changes in camera position and not the shifting of the

users’ eyes. The camera is on a raised platform that moves on a track. It is held in place by a pin

that fits into holes drilled at the desired collection angles for each eye. In addition, the collection

station was constructed so that the distance from the camera to the eye is five inches, which is

the desirable distance for achieving an optimal level of focus so that enough iris pattern

information is available in each image. The high-quality, near-infrared camera used is from the

LG IrisAccess® 3000 entry control system.

An existing iris collection graphical

user interface [6] was altered so that

information such as the angle at which the

image is obtained is stored along with

other information about the individual

when the iris image is saved (see Fig. 8).

This information includes user subject

number, which eye is being collected (right

or left), gender, iris color, iris age, and

18

Figure 9. Samples of Database Images from Each Non-Orthogonal Angle.

0° (Orthogonal) 15°

30° 45°

whether the individual is wearing glasses, contacts, and if the user has a history of eye trauma or

eye surgery [6]. For purposes of this research, users are instructed to remove their glasses so that

changes in iris patterns due to optical distortion by glass lenses is not a variable.

 The iris camera is used in conjunction with the MATLAB Image Acquisition and Image

Processing Toolboxes and the Matrox Meteor II frame grabber to collect the data [6]. They are

used to perform analog-to-digital conversion and to capture 9 images per second. These nine

images are then saved on the computer. This means that for each eye, thirty-six images are

obtained, since there are four different orientation angles and nine images are saved for each of

these four angles. Figure 9 shows examples of images from each of the four orientation angles.

19

Figure 10. Detection of Elliptical Pupillary and

Limbic Boundaries.

Data for 94 irises is stored in the non-orthogonal database. These irises were collected at

each non-orthogonal angle (as well as at 0°), and 58 went through three collections over the

course of a semester resulting in a database of over 7100 images.

VI. Non-Orthogonal Iris Image Preprocessing

The preprocessing of iris images begins with the detection of the pupillary (inner) and limbic

(outer) iris boundaries. In the case of orthogonal iris images, this involves locating sharp,

circular edges that are relatively easy to find when the image is noiseless, meaning that the iris

pixels are not hidden by glare, eyelids, and

eyelashes. In the case of non-orthogonal iris

images, the pupillary and limbic boundaries

are now elliptical in shape rather than circular.

This is a difficult problem to solve because

there are a greater number of variable

parameters with an ellipse than with a circle.

In the case of circular iris boundaries, there are

only two parameters, the radius of the circle

and the location of the center of the circle. An

ellipse has four variable parameters that must

be determined. They include the lengths of the

semi-major and semi-minor axes, the location of the center of the ellipse, and the amount of

rotation of the ellipse. The primary objective of Ensign Bonney’s 2004-2005 Trident Research

was to devise an algorithm for detecting these elliptical boundaries and determining their

20

12

2

2

2

=+
b
y

a
x

parameters (see Fig. 10) [1]. ENS Bonney’s segmentation algorithm was used in the current

research. This algorithm was the sole contribution of Ensign Bonney to the current Trident

Project. The division of labor is delineated in Appendix A.

VII. Elliptical-to-Circular Coordinate Transformation

 The second step in the preprocessing of an iris image is conversion of the image from

rectangular to polar coordinates. However, in the case of a non-orthogonal iris image, this polar

coordinate transformation no longer works and the iris template cannot be made because the iris

is now effectively bounded by concentric ellipses rather than concentric circles. In order to

rectify this situation, a function was written that performs an elliptical-to-circular coordinate

transformation on the iris image. Then, the rectangular-to-polar coordinate transformation can

still take place and the remainder of recognition can be performed. Ensign Bonney’s non-

orthogonal iris segmentation algorithm outputs all of the parameters needed to perform this

transformation.

 From the beginning, the assumption has been made that both the pupillary boundary ellipse

and the limbic boundary ellipse have the same eccentricity, which is the ratio of their semi-major

to semi-minor axis. This means that they are considered to be concentric ellipses even though

their parameters are sometimes slightly different. Generally, they are close enough to being

concentric, and the coordinate transformation still works well even if their parameters are not

exactly the same. The general equation of an ellipse with semi-minor axis length a and semi-

major axis length b (Fig. 11) is:

(1)

21

1
a2

a
b

x '⎛
⎝
⎜

⎞
⎠
⎟

2

+
y ' 2

b2 =1

x ' 2 + y ' 2 = b2

Figure 11. Ellipses with Rotation and Semi-Major and Semi-Minor Axes.

b

a

θ

x'= b
a

x y'= y

and

 First, the angle of rotation of the ellipse is found, and the iris image is rotated by an angle (θ)

of the same magnitude, but in the opposite direction so that the angle of rotation of the ellipse is

now 0° (major axis is vertical). Then, in order to perform the elliptical-to-circular coordinate

transformation, the x- and y-coordinate axes need to be redefined. The transformation function

defines the new x′- and y′- coordinate axes to be:

(2)

The y-axis is not changed in this transformation. The only change is that the x-axis is scaled by

the ratio of b to a. In all of the collected non-orthogonal iris images, b, along the vertical axis, is

longer than a, so this results in a “stretching out” of the horizontal axis. Substituting these

equations into the standard ellipse equation results in (3).

(3)

Making substitutions leads to (4), which has the equation of a circle with radius b in the new

coordinate system.

 (4)

Figure 12 shows the iris preprocessing graphical user interface (GUI). The image is

loaded, the segmentation operation is performed, and then the elliptical-to-polar transformation

22

Figure 12. Preprocessing GUI.

Figure 13. Polar Transformation of Transformed
Ellipse.

function transforms the non-

orthogonal iris to be circular in

shape. The vertical thin black lines

(meaning “no data”) scattered

throughout the image appear when

the transformation takes place

because when an elliptical iris

image is made into a circle, it is

missing some of the information in

a fully circular, orthogonal iris image. This is because when the pixels go through the

transformation in (2), the x′-coordinate values become more spaced out. For example, if the

eccentricity is 2 (b=2, a=1), then x′=2x, and the

vertical black lines would appear at every other

column in the transformed image.

 Since the pupillary and limbic boundaries of

the iris are now approximately circular, the

rectangular-to-polar coordinate transformation can now occur. The final result can be seen in

Fig. 13. The black spots in the image are created when the black vertical lines (“no data”) from

the transformed image in Fig. 12 go through the unwrapping process. When the LTP image is

produced, the LTP values will not be skewed by the black spots in the new image because these

pixels will not be taken into consideration in the creation of the LTP. Ideally, the pupillary

boundary should be a horizontal line, and further refinement and testing of the algorithm may

23

Figure 15. Poor Result for Direct Ellipse
Unwrapping.

Figure 14. Direct Unwrapping of Concentric
Ellipses.

help to improve this.

VIII. Direct Ellipse Unwrapping

Another method of non-orthogonal iris image

preprocessing that has been experimented with is

the direct unwrapping of ellipses without any

elliptical-to-circular coordinate transformation.

The algorithm starts with the limbic boundary and works inward toward the pupil, taking

successively smaller concentric ellipses and then unwrapping them to create a row in the polar

transformed image. As shown in Fig. 14, when the pupillary and limbic boundaries have close to

the same centroids and are nearly concentric, the unwrapping process is successful and the

pupillary and limbic boundaries are relatively equidistant.

 On the other hand, if the centroids of the pupillary boundary ellipse and the limbic boundary

ellipse are far apart, the direct ellipse unwrapping

does not work. For example, if the algorithm is

unwrapping ellipses based on the parameters of the

limbic boundary ellipse, and if the pupillary

boundary ellipse’s centroid is very different, the

pupil will actually not be unwrapped at all, and the result will be completely unusable (see Fig.

15).

IX. Affine Transformation

The elliptical-to-circular coordinate transformation can also be performed by applying an

affine transformation matrix to the image in MATLAB. This transformation matrix (5) scales the

24

Figure 16. Affine Transformation.

45° Non-Orthogonal Image

Affine Transform

Affine Transformed Image

horizontal axis of the image by ratio of semi-major axis to semi-minor axis as determined by the

segmentation algorithm.

(5)

The results of the affine transformation are displayed in Fig. 16. It is evident that the affine

transformation outputs an image with more circular pupillary and limbic iris boundaries which

can be detected by conventional orthogonal iris recognition algorithms. While this method may

seem preferable to the previously mentioned elliptical-to-circular transformation with the stripes

of “no data,” it has one drawback that makes it less desirable for the non-orthogonal case. During

this process, the transformation “smears” the iris pixels along the horizontal axis to create the

circular iris boundaries. The smearing results in the interpolation of iris pixels values, which

distorts the iris pixel information and could prevent accurate recognition. On the other hand,

although the “no data” elliptical-to-circular transformation is more difficult to format with

conventional iris recognition algorithms, this level of distortion is not present.

0 0
0 1 0
0 0 1

Ratio⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

25

X. Modification of 1-D Algorithm

To test the feasibility of non-orthogonal iris recognition, the 1-D algorithm was modified to

accommodate the transformed non-orthogonal images with the black, vertical “no data” lines.

First, the algorithm was changed to take two input files: a bit map file of the transformed non-

orthogonal iris image with the “no data” lines and a binary mask that has 1’s where the original

image pixels are located and 0’s where the “no data” lines are. Both the image and the mask are

then input into the preprocessing function. Because the transformed iris image now has circular

pupillary and limbic boundaries, the algorithm used for pupillary boundary detection (edge

detection and a Hough transform) can be applied to the image. When the rectangular-to-polar

transformation occurs, the “no data” mask is used to prevent the “no data” pixels from being

averaged with true iris pixels during the transformation process. Without the mask, the polar

image of the iris would be distorted by the “no data” pixels, which would negatively impact the

creation of iris templates to be used for recognition. Figures 17 and 18 show the process used to

create an iris template from a non-orthogonal iris image.

When the segmentation algorithm fails to accurately locate the elliptical pupillary boundary,

the ratio of semi-major axis to semi-minor axis of the pupillary boundary is also incorrect. This

means that the pupillary and limbic boundaries of the transformed iris image are not circular, the

iris cannot be accurately segmented, and iris template generation cannot occur. Figure 19

demonstrates an example of poor iris segmentation, incorrect elliptical-to-circular coordinate

transformation, and failure to generate an iris template.

This failed result occurred because the pupillary boundary was improperly segmented, which

in turn output a semi-major axis to semi-minor axis ratio that was much too high. This resulted in

26

Figure 18. 1-D Iris Template.

Orthogonal Iris Segmentation

Polar Coordinate
Transformation

Elliptical-to-Circular Transformation

Original Image Non-Orthogonal Iris Segmentation

1-D Iris Template
(see Figure 18)

an over-stretching of the image in the elliptical-to-circular transformation. In the transformed

image, the pupillary boundary is now an ellipse with its major axis in the x-direction. This over-

stretching also created an extremely dark transformed image because of the increased number of

“no-data” pixels.

Figure 17. Non-Orthogonal Template Generation.

27

Original Image Iris Segmentation

No Template Generated

Elliptical-to-Circular TransformationPolar Coordinate Transformation

Original Image Iris Segmentation

No Template Generated

Elliptical-to-Circular TransformationPolar Coordinate Transformation

Figure 19. Failed Non-Orthogonal Template Generation.

XI. Determining Accuracy of Database Collection

After collection, the database images were run through the non-orthogonal iris segmentation

algorithm that outputs the parameters of elliptical boundaries of the pupillary and limbic

boundaries, including the centroid, semi-major axis length, and semi-minor axis length [4]. To

assess the accuracy of collection at each non-orthogonal angle, the ratio of the semi-major axis

length to semi-minor axis length of the pupillary boundary was calculated for each subject eye.

Since the eccentricity of the pupillary boundary increases as the non-orthogonal imaging angle

increases, the ratio of semi-major axis length to semi-minor axis length of the pupillary boundary

should increase as well. Table 1 displays the mean ratio and standard deviation for each non-

orthogonal angle. Images taken from an angle of zero degrees (orthogonal images) have the

28

Figure 20. Analysis of non-orthogonal iris image database.

Database Collection Analysis

Angle
Mean
Ratio

Standard
Deviation

0° 1.085 0.3861
15° 1.1157 0.3750
30° 1.2147 0.3492
45° 1.3668 0.4227

Table 1. Iris data used for database analysis.

smallest mean ratio of 1.085. This ratio is to be expected because the entire iris can be seen in the

image, and in general, the limbic and pupillary boundaries of irises are approximately circular,

which would translate to equal semi-major and semi-minor axes (ratio = 1.0). As the non-

orthogonal imaging angle increases, the visible iris boundaries become more and more elliptical,

and at an angle of 45°, the mean ratio was 1.3668.

Figure 20 shows a histogram of the semi-major axis/semi-minor axis ratio values for images

collected at the four different angles. This graph shows considerable overlap between the

different non-orthogonal angles. In fact, the orthogonal and 15° degree images are virtually

29

Figure 21. Rank-matching curve for orthogonal iris recognition.

indistinguishable. Despite the overlap, the peak ratios for the 30° and 45° iris images are at

increasingly higher ratios, which is expected. The variability among the histograms for each

angle could be due to a few factors. One of these factors is that the person’s head and chin are

not completely restrained in the chin rest during collection. Another factor is that even though

users have visual aids to fix their eyes on during collection, involuntary movement of the eye

could cause variability in collection.

XII. Algorithm Performance

Figure 21 shows performance results using the 1-D algorithm on approximately 1250

orthogonal iris images collected as part of this project using a rank-matching curve. The

horizontal axis shows the number ranked matches, and the vertical axis shows the percent

accuracy. For any rank n, when presented with a new iris, the percent accuracy shows how often

the correct iris was identified as being within the n closest irises from the database. As an

example of how to read the curve, the correct eye was identified as one of the top ten (horizontal

axis = 10) 76% of the time [5]. This curve for orthogonal recognition is being used as a baseline

to measure the performance of non-orthogonal iris recognition.

30

Before testing was started, an enrollment template was created for each iris in the database

(94 irises). An enrollment template consists of the average of four templates of the same iris. All

of the images in the database were then compared to these enrollment templates, the Du

measurements were calculated, and rank-matching curves were generated.

To test the feasibility of non-orthogonal iris recognition, five different sets of enrollment

templates were created. First, an enrollment database of orthogonal templates was created by

averaging four templates of each iris imaged at 0°. Similarly, three more enrollment databases

were constructed from averaging four templates of iris images at each of the non-orthogonal

angles (15°, 30°, and 45°). A final enrollment database was constructed from taking one template

from each non-orthogonal angle for each iris and computing the average of the four templates.

Five tests were conducted by comparing templates of all images in the non-orthogonal

database to each of the five enrollment databases. The process of iris segmentation, image

transformation, template generation, and comparison takes about one minute for each image. The

rank-matching curves are displayed in Figs. 22-25. From these graphs, it can be seen that the

most accurate recognition occurs for iris images taken at the same non-orthogonal angle as the

enrollment database. For instance, when being compared to an enrollment database of orthogonal

images, over 60% of orthogonal images in the database were correctly ranked as the top match.

Over 80% of the orthogonal images were correctly ranked in the top 20 matches. The rank-

matching curve is lower than the “baseline” curve for orthogonal iris recognition because the

orthogonal iris images went through the same elliptical-to-circular transformation process that

the non-orthogonal images went through, and poor segmentation results would have distorted the

orthogonal images. Similarly, for each of the other four tests, over 50% of the images in the

31

database that were captured at the same angle were correctly matched as the top-ranking iris, and

over 80% were correctly ranked in the top 20.

Figure 22. Rank-matching curve for orthogonal enrollment templates.

Figure 23. Rank-matching curve for 15° enrollment templates.

32

Figure 25. Rank-matching curve for 45° enrollment templates.

Figure 24. Rank-matching curve for 30° enrollment templates.

33

Figure 26. Rank-matching curve for mixed enrollment templates.

In addition, these rank-matching curves also show that the success of recognition is also

dependent on the difference in angle between the enrollment template angle and the angle of the

iris template to which it is being compared. For example, when being compared to an orthogonal

enrollment template database, 15° iris images have better recognition results than 30° images,

which in turn perform better than 45° images. The same is true for an enrollment database of 45°

templates: 30° images have more accurate recognition results than 15°, which have better

performance than orthogonal iris images.

The best rank matching curve for non-orthogonal iris recognition was produced when all the

images in the database were compared to the database of enrollment templates that consist of an

average of one template at each non-orthogonal angle (Fig. 26). The rank-matching curves for

each non-orthogonal angle have better overall results for being ranked as the top match, and the

34

percent accuracy for being ranked in the top 20 irises is around 70% for all of the curves. The

15° and 30° images may have the best rank-matching curves because they are the two middle

non-orthogonal angles. This makes sense because the enrollment template is an average of

templates from each of the four non-orthogonal angles, and the average falls closer to the middle.

XIII. Conclusions

One of the difficulties with biometrics research is finding enough data, such as iris images,

for testing. In the case of non-orthogonal iris recognition, there are presently only a few

databases of non-orthogonal iris images, which make it difficult to develop robust recognition

algorithms. This research has successfully produced a database of over 7100 images.

The variations in collection results displayed by the ratios of semi-major axis length to semi-

minor axis length may have occurred for three reasons. First, even though the subject is

instructed to stare straight ahead during the collection process and has visual aids at which to

stare, there is no guarantee that the person was looking straight ahead at the instant the images

were captured. In addition, the performance of the segmentation algorithm that finds the

parameters of the elliptical iris boundaries is not perfect, and the true location of the boundaries

is subjective. In addition, non-orthogonal iris images are not perfect ellipses because human iris

shapes are not always perfectly circular, even in orthogonal images.

This research also resulted in the successful implementation of 1-D iris recognition for non-

orthogonal iris images. The best results were produced when enrollment templates were made

from averaging templates from each non-orthogonal angle and compared to all images in the

non-orthogonal database. Also, for single-angle enrollment templates, the smaller the difference

in angle between enrolled template and compared template, the better the results for recognition.

35

Accuracy of non-orthogonal iris recognition was lower than for orthogonal iris recognition

for various reasons. The 1-D algorithm that was used in this research is not as accurate as other

commercial algorithms because it discards a lot of information during iris preprocessing. Also, in

cases of poor iris segmentation, the elliptical-to-circular transformation did not create circular

pupillary and limbic boundaries, and iris templates could not properly be created. The elliptical-

to-circular transformation itself was perhaps too simplistic a transformation to use because the

iris is actually a three-dimensional structure, and the transformation function worked only in the

x-y plane.

XIV. Future Work

The results of this research show the potential for the successful implementation of

commercial non-orthogonal iris recognition algorithms and open the door to future research in

this area. First, the elliptical-to-circular transformed images can be formatted to work with other

orthogonal iris recognition algorithms to see if better results are achieved than with the 1-D

algorithm. In addition, the elliptical-to-circular transformation should be refined so that all three

dimensions are considered. In order for this to work, the elliptical iris boundaries also need to be

more accurately segmented.

More images can also be added to the non-orthogonal iris image database, and more refined

methods for determining the accuracy of angular capture can be created. First, using three-

dimensional rotation and projection, expected values for ratios of semi-major axis to semi-minor

axis could be found for each non-orthogonal angle. That way, the ratio of each incoming image

can be compared to the expected ratio.

36

XV. Works Cited

[1] B. Bonney, “Non-Orthogonal Iris Localization,” Final U.S. Naval Academy Trident Report

Apr. 2005.

[2] Y. Du, R.W. Ives, D.M. Etter, T.B. Welch, and C.-I Chang, "One Dimensional Approach to

Iris Recognition", Proceedings of the SPIE, pp. 237-247, Apr., 2004.

[3] Y. Du, R.W. Ives, and D.M. Etter, "Iris Recognition", The Electrical Engineering Handbook,

3rd Edition, Boca Raton, FL: CRC Press, 2006, pp. 25-1 to 25-10.

[4] B.L. Bonney, R.W. Ives, D.M. Etter and Y. Du, "Iris Pattern Extraction using Bit-Planes and

Standard Deviations," Proc. of the 38th Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, pp. 582-586, Nov. 2004.

[5] Y. Du, R.W. Ives, D.M. Etter, and T.B. Welch, "Use of One-Dimensional Iris Signatures to

Rank Iris Pattern Similarities," Optical Engineering, 2006 (in press).

[6] R. Schultz and R.W. Ives, "Biometric Data Acquisition using MATLAB GUIs," Proceedings

of the 2005 IEEE Frontiers in Education Conference, Indianapolis, IN, October 2005, pp. S1G-1

to S1G-5.

[7] Y. Du, B. Bonney, R.W. Ives, D.M. Etter, and R. Schultz, "Analysis of Partial Iris

Recognition using a 1D Approach," Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Vol. II, pp. 961-964, Mar. 2005.

XVI. Works Consulted

1. Calvert, J.B. “Ellipse,” Dr. James B. Calvert. 31 May 2005.

 <http://www.du.edu/~jcalvert/math/ellipse.htm>.

37

2. Daugman, John. How Iris Recognition Works. 25 Oct 2003.

<www.cl.cam.ac.uk/users/jgd1000/irisrecog.pdf>.

3. Y. Du, B. Bonney, R.W. Ives, D.M. Etter, and R. Schultz, “Analysis of Partial Iris

Recognition using a 1D Approach,” Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Vol. II, pp. 961-964, Mar. 2005.

4. Weisstein, Eric W. "Ellipse." From MathWorld--A Wolfram Web Resource. 24 May 2005.

<http://mathworld.wolfram.com/Ellipse.html>

38

XVII. Appendices

Appendix A: Division of Work

Appendix B: MATLAB code written for non-orthogonal iris preprocessing.

Appendix C: Experimental Data

Appendix D: Publications

39

Appendix A: Division of Work

• Ensign Bonney’s Contribution:

o Developed algorithm for detecting elliptical iris boundaries

o Determined parameters of ellipses for segmentation

o Developed a GUI to display segmentation results

• MIDN 1/C Gaunt’s Fall 2005 Semester Contribution:

o Construction of Non-Orthogonal Iris Collection Station

 Collection of data for 40 irises

o Development of two methods for non-orthogonal iris image preprocessing

 Elliptical-to-circular coordinate transformation

 Direct unwrapping of concentric ellipses

 Modified segmentation GUI to display elliptical-to-circular transformation

• MIDN 1/C Gaunt’s Spring 2006 Semester Contribution:

o Modification of 1-D algorithm to accommodate use of non-orthogonal iris images

o Testing of non-orthogonal iris recognition algorithm

o Ongoing collection of irises

o Submission and presentation to the 2006 National Conference for Undergraduate

Research

40

Appendix B: MATLAB Code

Function List:

transform_iris.m: 41

This function takes the parameters for the pupillary (inner) and limbic (outer)
boundaries of the iris and performs the elliptical-to-circular coordinate
transformation.

Segmentation_GUI2.m 44

This function creates a graphical user interface (GUI) that segments non-orthogonal

iris images and performs the elliptical-to-circular transformation. The results are

displayed in the GUI.

iris_capture.m 55

This function creates the GUI that interfaces with the near-infrared camera used
for iris image collection. The images are acquired and saved along with
information about each iris (i.e. the non-orthogonal angle).

41

function [v,w,h_cent,g_cent,max_radius_l,max_radius_p,ratio] =
transform_iris(p_stats,i_stats,iris)

%This function takes the parameters for the pupillary (inner) and limbic
%(outer) boundaries of the iris and performs the elliptical-to-circular
%coordinate transformtion.
%
% usage: [v,h_cent,g_cent,max_radius]=transform_iris(p_stats,i_stats,iris)
%
%where v is the transformed image, h_cent and g_cent are the x- and
%y-coordinates of the transformed circle, max_radius is the radius of
%the transformed circle, p_stats and i_stats are structures that contain
%the parameters of the pupillary and limbic ellipses, and iris is the
%original iris image.
%
%Author: MIDN 1/C Ruth Gaunt

angle = p_stats.Orientation

i_semi_x = round(i_stats.MinorAxisLength/2);
i_semi_y = round(i_stats.MajorAxisLength/2);
i_cent_x = round(i_stats.Centroid(1));
i_cent_y = round(i_stats.Centroid(2));

p_semi_x = round(p_stats.MinorAxisLength/2);
p_semi_y = round(p_stats.MajorAxisLength/2);
p_cent_x = round(p_stats.Centroid(1));
p_cent_y = round(p_stats.Centroid(2));

%Rotates iris image so that the orientation is 90 degrees, meaning that the
%rotation parameter of the ellipse is eliminated.

if abs(p_semi_y - p_semi_x)<=10
 iris_new = iris;
else
 if angle>0
 iris_new = imrotate(iris,(90-angle),'nearest','crop');
 elseif angle<0
 iris_new = imrotate(iris,-(90+angle),'nearest','crop');
 elseif angle == 0
 iris_new = imrotate(iris,0,'nearest','crop');
 end
end

42

bitplane_zero2 = adjusted_bitzero(iris_new);

[pupil_mask2, stats2] = pupil_morph2(bitplane_zero2);

%figure(2), imshow(iris_new)

k_init = i_cent_y - i_semi_y-100
if k_init < 1
 k_init = 1;
end
k_final = i_cent_y + i_semi_y+100
if k_final>480
 k_final=480;
end

l_init = i_cent_x - i_semi_x-100
if l_init < 1
 l_init = 1;
end

l_final = i_cent_x + i_semi_x+100
if l_final > 640
 l_final = 640;
end

dist_major = i_semi_y - p_semi_y
dist_minor = i_semi_x - p_semi_x

%Performs the elliptical-to-circular coordinate transformation
for k = 1:480
 for l = l_init: l_final
 x_init = l_init - i_cent_x;
 x = l - i_cent_x;
 m_init = round((p_semi_x/p_semi_y)*x_init) + p_cent_x;
 m = round((p_semi_x/p_semi_y)*x)+ p_cent_x;
 g = k - k_init +1;
 h = m - m_init +1;
 q(k,h) = iris_new(k,l);
 b(k,h) = 1;
 end
end

43

h_cent = p_cent_x - m_init + 1;
g_cent = p_cent_y - k_init + 1;
max_radius_l = i_semi_y;
max_radius_p = p_semi_y;
[s,a]= size(q);

h_init = h_cent-319;
h_final = h_cent+320;

% x_final = l_final - i_cent_x;
% m_final = round((i_semi_x/i_semi_y)*x_final)+ i_cent_x;

if h_init<=0
 h_init = 1;
end

if a>640
 v = imcrop(q,[(h_init) 1 639 479]);
 w = imcrop(b,[(h_init) 1 639 479]);
else
 v = q;
 w = b;
end
size(v)

figure(2), imshow(v)
figure(6), imshow(w)
% imwrite(uint8(v),'iris_transform.bmp')
% imwrite(uint8(w),'iris_transform_mask.bmp')

44

function varargout = Segmentation_GUI2(varargin)
% SEGMENTATION_GUI2 M-file for Segmentation_GUI2.fig
% SEGMENTATION_GUI2, by itself, creates a new SEGMENTATION_GUI2 or raises the
existing
% singleton*.
%
% H = SEGMENTATION_GUI2 returns the handle to a new SEGMENTATION_GUI2 or
the handle to
% the existing singleton*.
%
% SEGMENTATION_GUI2('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SEGMENTATION_GUI2.M with the given input
arguments.
%
% SEGMENTATION_GUI2('Property','Value',...) creates a new SEGMENTATION_GUI2 or
raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Segmentation_GUI2_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Segmentation_GUI2_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Segmentation_GUI2

% Last Modified by GUIDE v2.5 21-Nov-2005 22:22:49

% Begin initialization code - DO NOT EDIT
% Authors: ENS B. Bonney (USNA 2005), MIDN 1/C R. Gaunt
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Segmentation_GUI2_OpeningFcn, ...
 'gui_OutputFcn', @Segmentation_GUI2_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

45

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Segmentation_GUI2 is made visible.
function Segmentation_GUI2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Segmentation_GUI2 (see VARARGIN)

% Choose default command line output for Segmentation_GUI2
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Segmentation_GUI2 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

%Turn off initial axes1 and axes2 for GUI execution
set(handles.axes1, 'HandleVisibility', 'ON');
axes(handles.axes1);
axis off;
title(' ');
set(handles.axes1, 'HandleVisibility', 'OFF');

set(handles.axes2, 'HandleVisibility', 'ON');
axes(handles.axes2);
axis off;
title(' ');
set(handles.axes2, 'HandleVisibility', 'OFF');
set(handles.text20, 'String', ' ');
set(handles.text21, 'String', ' ');

mex localthresh.c
% --- Outputs from this function are returned to the command line.

46

function varargout = Segmentation_GUI2_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in transform.
function loadraw_Callback(hObject, eventdata, handles)
% hObject handle to transform (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.text4, 'String', ' ');
set(handles.numtruepixel, 'String', ' ');
set(handles.text6, 'String', ' ');
set(handles.nummaskpixel, 'String', ' ');
set(handles.text10, 'String', ' ');
set(handles.lowqual, 'String', ' ');
set(handles.text12, 'String', ' ');
set(handles.upperqual, 'String', ' ');
set(handles.text15, 'String', ' ');
set(handles.text18, 'String', ' ');
set(handles.topqual, 'String', ' ');
set(handles.text16, 'String', ' ');
set(handles.numcommonpixel, 'String', ' ');

global iris_image;
filename = get(handles.filename, 'String');

iris_image = imread(filename);

set(handles.axes1, 'HandleVisibility', 'ON');
axes(handles.axes1);
%gimage(norim(iris_image)), axis image;
imshow(iris_image,[])
axis off;
set(handles.axes1, 'HandleVisibility', 'OFF');

global truth_mask;
global iris_image;

47

truth_mask = get_mask(iris_image);

% --- Executes on button press in segment.
function segment_Callback(hObject, eventdata, handles)
% hObject handle to segment (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global iris_image2;
global iris_mask;
global stats;

set(handles.text20, 'String', ' ');
set(handles.text21, 'String', ' ');

set(handles.text20, 'String', 'Segmenting...');
pause(0.01);

[iris_mask, p_stats, i_stats] = iris_segmentation(iris_image2);
save eye.mat p_stats i_stats;

set(handles.axes2, 'HandleVisibility', 'ON');
axes(handles.axes2);
temp = uint8(bwmorph(iris_mask, 'dilate', 1));
%gimage(norim(norim(uint8(temp)) + iris_image2)), axis image;
temp = logical(temp);
iris_image3 = iris_image2;
iris_image3(temp)=255;
imshow(iris_image3,[])
set(handles.axes2, 'HandleVisibility', 'OFF');

set(handles.text20, 'String', ' ');

% --- Executes on button press in loadtruth.
function transform_Callback(hObject, eventdata, handles)
% hObject handle to loadtruth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global iris_image2;
global iris_mask;

48

global stats;

set(handles.text20, 'String', ' ');
set(handles.text21, 'String', ' ');

set(handles.text21, 'String', 'Transforming...');
pause(0.01);

%[iris_mask, p_stats, i_stats] = iris_segmentation(iris_image2);
load eye.mat;
[v, h_cent, g_cent, max_radius] = transform_iris(p_stats,i_stats,iris_image2);

set(handles.axes1, 'HandleVisibility', 'ON');
axes(handles.axes1);
%gimage(v), axis image;
imshow(v, [])
axis off;
set(handles.axes1, 'HandleVisibility','OFF');
set(handles.text21,'String',' ');

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1

% --- Executes during object creation, after setting all properties.
function axes2_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes2

% --- Executes during object creation, after setting all properties.
function transform_CreateFcn(hObject, eventdata, handles)
% hObject handle to transform (see GCBO)

49

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes during object creation, after setting all properties.
function loadtruth_CreateFcn(hObject, eventdata, handles)
% hObject handle to loadtruth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes during object creation, after setting all properties.
function savetruth_CreateFcn(hObject, eventdata, handles)
% hObject handle to savetruth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes during object creation, after setting all properties.
function segment_CreateFcn(hObject, eventdata, handles)
% hObject handle to segment (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in Reset.
function Reset_Callback(hObject, eventdata, handles)
% hObject handle to Reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.axes1, 'HandleVisibility', 'ON');
axes(handles.axes1);
cla reset;
axis off;
title(' ');
set(handles.axes1, 'HandleVisibility', 'OFF');

set(handles.axes2, 'HandleVisibility', 'ON');
axes(handles.axes2);
cla reset;
axis off;
title(' ');
set(handles.axes2, 'HandleVisibility', 'OFF');

50

set(handles.text4, 'String', ' ');
set(handles.numtruepixel, 'String', ' ');
set(handles.text6, 'String', ' ');
set(handles.nummaskpixel, 'String', ' ');
set(handles.text10, 'String', ' ');
set(handles.lowqual, 'String', ' ');
set(handles.text12, 'String', ' ');
set(handles.upperqual, 'String', ' ');
set(handles.text15, 'String', ' ');
set(handles.text18, 'String', ' ');
set(handles.topqual, 'String', ' ');
set(handles.text16, 'String', ' ');
set(handles.numcommonpixel, 'String', ' ');

% --- Executes during object creation, after setting all properties.
function Reset_CreateFcn(hObject, eventdata, handles)
% hObject handle to Reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

function filename_Callback(hObject, eventdata, handles)
% hObject handle to filename (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of filename as text
% str2double(get(hObject,'String')) returns contents of filename as a double

% --- Executes during object creation, after setting all properties.
function filename_CreateFcn(hObject, eventdata, handles)
% hObject handle to filename (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

51

 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in calculate.
function calculate_Callback(hObject, eventdata, handles)
% hObject handle to calculate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global iris_image;
global iris_image2;
global truth_mask;
global iris_mask;
global stats;

%fill mask
n = 4;
temp_mask = ones(480, 640);
while sum(~temp_mask(:)) == 0
 temp_mask = bwmorph(iris_mask, 'dilate', n);
 temp_mask = imfill(temp_mask, [1 1]);
 location = round([stats.Centroid(2) stats.Centroid(1)]);
 temp_mask = imfill(temp_mask, location);
 n = n + 1;
end

iris_mask = ~temp_mask;
iris_mask = bwmorph(iris_mask, 'dilate', n-2);

set(handles.axes2, 'HandleVisibility', 'ON');
axes(handles.axes2);
%gimage(norim(norim(uint8(iris_mask)) + iris_image2)), axis image;
imshow(uint8(iris_mask) + iris_image2,[])
axis off;
set(handles.axes2, 'HandleVisibility', 'OFF');

%%
combo = truth_mask & iris_mask;
num_common_pixels = sum(combo(:));
num_true_pixels = sum(truth_mask(:));
num_mask_pixels = sum(iris_mask(:));

52

num_error_pixels = num_mask_pixels - num_common_pixels;
if num_error_pixels < 0
 num_error_pixels = 0;
end

low = (num_common_pixels - 0.1 * num_error_pixels) / num_true_pixels;
mid = (num_common_pixels - 0.4 * num_error_pixels) / num_true_pixels;;
top = (num_common_pixels - 0.7 * num_error_pixels) / num_true_pixels;;

set(handles.text4, 'String', 'Number of True Iris Pixels:');
set(handles.numtruepixel, 'String', num_true_pixels);
set(handles.text6, 'String', 'Number of Mask Iris Pixels:');
set(handles.nummaskpixel, 'String', num_mask_pixels);
set(handles.text10, 'String', '10% Quality Bound:');
set(handles.lowqual, 'String', low);
set(handles.text12, 'String', '40% Quality Bound:');
set(handles.upperqual, 'String', mid);
set(handles.text18, 'String', '70% Quality Bound:');
set(handles.topqual, 'String', top);
set(handles.text16, 'String', 'Number of Common Pixels:');
set(handles.numcommonpixel, 'String', num_common_pixels);

% --- Executes during object creation, after setting all properties.
function calculate_CreateFcn(hObject, eventdata, handles)
% hObject handle to calculate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes during object creation, after setting all properties.
function text15_CreateFcn(hObject, eventdata, handles)
% hObject handle to text15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in loadiris2.
function loadiris2_Callback(hObject, eventdata, handles)
% hObject handle to loadiris2 (see GCBO)

53

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.text20, 'String', ' ');
set(handles.text21, 'String', ' ');

global iris_image2;

filename2 = get(handles.edit2, 'String')

iris_image2 = imread(filename2);

set(handles.axes2, 'HandleVisibility', 'ON');
axes(handles.axes2);
%gimage(norim(iris_image2)), axis image;
imshow(iris_image2,[])
axis off;
set(handles.axes2, 'HandleVisibility', 'OFF');

% --- Executes during object creation, after setting all properties.
function loadiris2_CreateFcn(hObject, eventdata, handles)
% hObject handle to loadiris2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as a double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

54

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes during object creation, after setting all properties.
function numcommonpixel_CreateFcn(hObject, eventdata, handles)
% hObject handle to numcommonpixel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes during object creation, after setting all properties.
function text16_CreateFcn(hObject, eventdata, handles)
% hObject handle to text16 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

55

function varargout = iriscapture(varargin)
% Offaxis iriscapture v .0
%
%
% IRISCAPTURE M-file for iriscapture.fig version 0.2
% IRISCAPTURE, by itself, creates a new IRISCAPTURE or raises the existing
% singleton*.
%
% H = IRISCAPTURE returns the handle to a new IRISCAPTURE or the handle to
% the existing singleton*.
%
% IRISCAPTURE('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in IRISCAPTURE.M with the given input arguments.
%
% IRISCAPTURE('Property','Value',...) creates a new IRISCAPTURE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before iriscapture_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to iriscapture_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
global IRIS_ROOT;
global IRIS_DB;
global FRAMES_PER_TRIGGER
global PERIOD;
global ACTUAL_FRAME_RATE
global DESIRED_FRAME_RATE

IRIS_ROOT='c:\offaxisiris';
IRIS_DB='\irisdb.csv';
PERIOD=1;
ACTUAL_FRAME_RATE=30; % 30 frames per second
DESIRED_FRAME_RATE=10; % 10 frames per second
FRAMES_PER_TRIGGER=9;

% Edit the above text to modify the response to help iriscapture

% Last Modified by GUIDE v2.5 16-Oct-2005 16:59:45

% Begin initialization code - DO NOT EDIT
% Authors: R.C. Schultz, MIDN 1/C R.M. Gaunt

56

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @iriscapture_OpeningFcn, ...
 'gui_OutputFcn', @iriscapture_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

camera_timer = timer('TimerFcn',@Timer_Call,'Period', 45.0, 'ExecutionMode','fixedDelay');
start(camera_timer);

function Timer_Call(handle, obj)
a = serial('COM1');
fopen(a);
c = '197 240 114';
fprintf(a,c);
fclose(a);

% --- Executes just before iriscapture is made visible.
function iriscapture_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to iriscapture (see VARARGIN)

% Choose default command line output for iriscapture
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes iriscapture wait for user response (see UIRESUME)

57

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = iriscapture_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes on button press in Obstructed.
function Obstructed_Callback(hObject, eventdata, handles)
% hObject handle to Obstructed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

58

% Hint: get(hObject,'Value') returns toggle state of Obstructed

% --- Executes on button press in Trauma.
function Trauma_Callback(hObject, eventdata, handles)
% hObject handle to Trauma (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of Trauma

% --- Executes on button press in Surgery.
function Surgery_Callback(hObject, eventdata, handles)
% hObject handle to Surgery (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of Surgery

% --- Executes on button press in checkbox4.
function checkbox4_Callback(hObject, eventdata, handles)
% hObject handle to checkbox4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox4

% --- Executes on button press in Glasses.
function Glas_Callback(hObject, eventdata, handles)
% hObject handle to Glasses (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of Glasses

% --- Executes on button press in checkbox6.
function checkbox6_Callback(hObject, eventdata, handles)
% hObject handle to checkbox6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

59

% Hint: get(hObject,'Value') returns toggle state of checkbox6

% --- Executes on button press in lefteye.
function lefteye_Callback(hObject, eventdata, handles)
% hObject handle to lefteye (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of lefteye

% --- Executes on button press in righteye.
function righteye_Callback(hObject, eventdata, handles)
% hObject handle to righteye (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of righteye

% --- Executes on button press in Female.
function radiobutton3_Callback(hObject, eventdata, handles)
% hObject handle to Female (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of Female

% --- Executes on button press in Female.
function Female_Callback(hObject, eventdata, handles)
% hObject handle to Female (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of Female

% --- Executes on button press in angle0.
function angle0_Callback(hObject, eventdata, handles)
% hObject handle to angle0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

60

% Hint: get(hObject,'Value') returns toggle state of angle0

% --- Executes on button press in angle15.
function angle15_Callback(hObject, eventdata, handles)
% hObject handle to angle0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of angle15

% --- Executes on button press in angle30.
function angle30_Callback(hObject, eventdata, handles)
% hObject handle to angle0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of angle30

% --- Executes on button press in angle45.
function angle45_Callback(hObject, eventdata, handles)
% hObject handle to angle0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of angle45

% --- Executes during object creation, after setting all properties.
function IrisAge_CreateFcn(hObject, eventdata, handles)
% hObject handle to IrisAge (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function IrisAge_Callback(hObject, eventdata, handles)

61

% hObject handle to IrisAge (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of IrisAge as text
% str2double(get(hObject,'String')) returns contents of IrisAge as a double

% --- Executes during object creation, after setting all properties.
function IrisColor_CreateFcn(hObject, eventdata, handles)
% hObject handle to IrisColor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on selection change in IrisColor.
function IrisColor_Callback(hObject, eventdata, handles)
% hObject handle to IrisColor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns IrisColor contents as cell array
% contents{get(hObject,'Value')} returns selected item from IrisColor

% --- Executes on button press in previewbutton.
function previewbutton_Callback(hObject, eventdata, handles)
% hObject handle to previewbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of previewbutton

function filename = GetFilename(handles)
% Generate and return the filename based on parameters
global IRIS_ROOT;

62

global IRIS_DB;
directory = GetDirectory(handles);
Subject=GetSubjectNumber(handles);
Eye=GetEye(handles);
Number=get(handles.ImageNumber,'String');
Normal=GetGlassesorContacts(handles); % wearing glasses, contacts or normal
filename=sprintf('%s\\%s_%s%s%s_%s.bmp',directory,Subject,Eye,Normal,datestr(now,'yyyym
mdd'),Number);

function directory = GetDirectory(handles)
% Return the directory for the current Subject
global IRIS_ROOT;
global IRIS_DB;
Subject=GetSubjectNumber(handles);
directory=sprintf('%s\\%s',IRIS_ROOT,Subject);

function normal = GetGlassesorContacts(handles)
% Return N - no glasses
% return G - Glasses
% return C - Contacts
if (get(handles.Glasses,'Value')),
 normal='G';
else
 if (get(handles.Contacts,'Value')),
 normal = 'C';
 else
 normal = 'N';
 end
end

% --- Executes on button press in SaveImage.
function SaveImage_Callback(hObject, eventdata, handles)
% hObject handle to SaveImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global IRIS_ROOT;
global IRIS_DB;
global g_frame;
Subject=GetSubjectNumber(handles);
Eye=GetEye(handles);
Sex=GetSex(handles);
Age=GetIrisAge(handles);
Color=GetIrisColor(handles);
Angle=GetIrisAngle(handles);

63

Details=GetSubjectDetails(handles);

directory=GetDirectory(handles);
filename=GetFilename(handles);
if (exist(filename) == 2)
 button=questdlg('This file exists! \nAre you sure want to overwrite it?');
else
 button = 'Yes';
end
if (button == 'Yes')

 if (exist(directory) == 7)
 imwrite(g_frame,filename,'bmp');
 else
 mkdir(directory);
 imwrite(g_frame,filename,'bmp');
 end
 fid=fopen(sprintf('%s%s',IRIS_ROOT,IRIS_DB),'a');

imageinfo=sprintf('%s,%s,%s,%s,%s,%s,%s,%s',Subject,Eye,Sex,Age,Color,Details,Angle,filen
ame);
 fprintf(fid,'%s\n',imageinfo);
 fclose(fid);
 set(handles.FileName,'String',imageinfo);
end

% --- Executes during object creation, after setting all properties.
function ImageNumber_CreateFcn(hObject, eventdata, handles)
% hObject handle to ImageNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
set(hObject,'String','1');
set(hObject,'Value',1);

64

function ImageNumber_Callback(hObject, eventdata, handles)
% hObject handle to ImageNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ImageNumber as text
% str2double(get(hObject,'String')) returns contents of ImageNumber as a double
curr=get(hObject,'String');
set(hObject,'Value',str2num(curr));

% --- Executes during object creation, after setting all properties.
function DeviceList_CreateFcn(hObject, eventdata, handles)
% hObject handle to DeviceList (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
DeviceList_LoadListBox(hObject)

function DeviceList_LoadListBox(hObject)
% hObject handle to DeviceList
global g_vidObjects;
global g_numdrivers;
global g_drivers;
hwinfo = imaqhwinfo;
g_drivers = hwinfo.InstalledAdaptors;
g_numdrivers = max(size(g_drivers));
set(hObject,'String',g_drivers);
g_vidObjects=videoinput(char(g_drivers(1)),1)
if g_vidObjects.Name=='M_RS170-matrox-1',
 set(g_vidObjects,'SelectedSourceName','CH2');
end
%if g_vidObjects
for a = 2:g_numdrivers-1,
 g_vidObjects(a)=videoinput(char(g_drivers(a)),a);
end

65

% --- Executes on selection change in DeviceList.
function DeviceList_Callback(hObject, eventdata, handles)
% hObject handle to DeviceList (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns DeviceList contents as cell array
% contents{get(hObject,'Value')} returns selected item from DeviceList

% --- Executes on button press in CaptureImage.
function CaptureImage_Callback(hObject, eventdata, handles)
% hObject handle to CaptureImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global g_vidObjects
global g_drivers;
global g_frame;
DeviceList=get(handles.DeviceList);
vidObj=g_vidObjects(DeviceList.Value);
g_frame=getsnapshot(vidObj);
%figure(handles.figure1);
image(g_frame);
tmp=g_drivers(DeviceList.Value)
if size(char(tmp)) == size('matrox')
 if char(tmp) == 'matrox'
 colormap(gray(256));
 end
end

% --- Executes on button press in Glasses.
function Glasses_Callback(hObject, eventdata, handles)
% hObject handle to Glasses (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of Glasses

% --- Executes during object creation, after setting all properties.

66

function figure1_CreateFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in ClearFields.
function ClearFields_Callback(hObject, eventdata, handles)
% hObject handle to ClearFields (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.Obstructed,'Value',0);
set(handles.Trauma,'Value',0);
set(handles.Disease,'Value',0);
set(handles.Glasses,'Value',0);
set(handles.Contacts,'Value',0);
set(handles.Surgery,'Value',0);
set(handles.SubjectNumber,'Value',0);
set(handles.SubjectNumber,'String','00000');
set(handles.Male,'Value',1);
set(handles.LeftEye,'Value',1);
set(handles.ImageNumber,'String','1');
set(handles.ImageNumber,'Value',1);
set(handles.angle0, 'Value', 1);

function IrisNumber_Callback(hObject, eventdata, handles)
% hObject handle to IrisNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of IrisNumber as text
% str2double(get(hObject,'String')) returns contents of IrisNumber as a double

% --- Executes during object creation, after setting all properties.
function IrisNumber_CreateFcn(hObject, eventdata, handles)
% hObject handle to IrisNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

67

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes during object creation, after setting all properties.
function Male_CreateFcn(hObject, eventdata, handles)
% hObject handle to Male (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes during object creation, after setting all properties.
function angle0_CreateFcn(hObject, eventdata, handles)
% hObject handle to angle0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in PreviewButton.
function PreviewButton_Callback(hObject, eventdata, handles)
% hObject handle to PreviewButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global g_vidObjects
DeviceList=get(handles.DeviceList);
closepreview;
%vidRes = get(g_vidObjects, 'VideoResolution');
%nBands = get(g_vidObjects,'NumberOfBands');
%hImage = image(zeros(vidRes(2),vidRes(1),nBands));
preview(g_vidObjects(DeviceList.Value));
%colormap(gray(256));

% --- Executes during object creation, after setting all properties.
function IrisCaptureFigure_CreateFcn(hObject, eventdata, handles)
% hObject handle to IrisCaptureFigure (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

function Subject=GetSubjectNumber(handles)
%
Subject=get(handles.SubjectNumber,'String');

68

function Eye=GetEye(handles)
% Return the Eye Selected
if (get(handles.LeftEye,'Value') == 1)
 Eye='L';
else
 Eye='R';
end

function Sex=GetSex(handles)
% Return the Sex of the Subject
if (get(handles.Male,'Value') == 1)
 Sex='m';
else
 Sex='f';
end

function Age=GetIrisAge(handles)
% Return the Age of the Iris
Age = get(handles.IrisAge,'String');

function Color=GetIrisColor(handles)
% Return the Color of the Iris
Color = get(handles.IrisColor,'String');
Color = cell2mat(Color(get(handles.IrisColor,'Value')));

function Angle = GetIrisAngle(handles)
if (get(handles.angle0,'Value') == 1)
 Angle = '0';
elseif (get(handles.angle15,'Value') == 1)
 Angle = '15';
elseif (get(handles.angle30, 'Value') == 1)
 Angle = '30';
elseif (get(handles.angle45,'Value') == 1)
 Angle = '45';
end

function ImageNumber=GetLastImageNumber(handles, Subject)
% Get the last image number of a given Subject or
% of the Subject Currently Selected
if (Subject=='')
 Subject = GetSubjectNumber(handles);
end

69

function DATESTR=GetDate(D)
% Return the current date
if (D == '')
 D = now;
end
DSTR=datestr(D,'yymmdd');

function Details=GetSubjectDetails(handles)
% return the results of the checkboxes
% Leaving room for 5 extra details we didn't think about yet.
% There has to be a better way of doing this!
if(get(handles.Obstructed,'Value'))
 Details=sprintf('O');
else
 Details=sprintf('');
end
if(get(handles.Glasses,'Value'))
 Details=sprintf('%s,G',Details);
else
 Details=sprintf('%s,',Details);
end
if(get(handles.Contacts,'Value'))
 Details=sprintf('%s,C',Details);
else
 Details=sprintf('%s,',Details);
end
if(get(handles.Trauma,'Value'))
 Details=sprintf('%s,T',Details);
else
 Details=sprintf('%s,',Details);
end
if(get(handles.Disease,'Value'))
 Details=sprintf('%s,D',Details);
else
 Details=sprintf('%s,',Details);
end
if(get(handles.Surgery,'Value'))
 Details=sprintf('%s,S,,,,',Details);
else
 Details=sprintf('%s,,,,,',Details);
end

70

% Make sure you delete the commas before you add more details!!!!

function SubjectNumber_Callback(hObject, eventdata, handles)
% hObject handle to SubjectNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of SubjectNumber as text
% str2double(get(hObject,'String')) returns contents of SubjectNumber as a double

% --- Executes during object creation, after setting all properties.
function SubjectNumber_CreateFcn(hObject, eventdata, handles)
% hObject handle to SubjectNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in NextImage.
function NextImage_Callback(hObject, eventdata, handles)
% hObject handle to NextImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global IRIS_ROOT;
Subject=GetSubjectNumber(handles);
path=sprintf('%s\\%s',IRIS_ROOT,Subject);
curr=get(handles.ImageNumber,'Value');
curr=curr+1;

71

set(handles.ImageNumber,'Value',curr);
set(handles.ImageNumber,'String',curr);
if (exist(path) == 7)

end

% --- Executes on button press in PreviousImage.
function PreviousImage_Callback(hObject, eventdata, handles)
% hObject handle to PreviousImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global IRIS_ROOT;
Subject=GetSubjectNumber(handles);
path=sprintf('%s\\%s',IRIS_ROOT,Subject);
curr=get(handles.ImageNumber,'Value');
curr=max(1,curr-1);
set(handles.ImageNumber,'Value',curr);
set(handles.ImageNumber,'String',curr);
if (exist(path) == 7)

end

function UpdateImage(handles)
% update the Displayed image with one that exists if it exists.

% --- Executes on button press in VidCapture.
function VidCapture_Callback(hObject, eventdata, handles)
% hObject handle to VidCapture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in SaveImages.
function SaveImages_Callback(hObject, eventdata, handles)
% hObject handle to SaveImages (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global IRIS_ROOT;
global IRIS_DB;
global g_video;

72

global FRAMES_PER_TRIGGER;
Subject=GetSubjectNumber(handles);
Eye=GetEye(handles);
Sex=GetSex(handles);
Age=GetIrisAge(handles);
Color=GetIrisColor(handles);
Angle=GetIrisAngle(handles);

Details=GetSubjectDetails(handles);

directory=GetDirectory(handles);
for a=1:FRAMES_PER_TRIGGER,

 filename=GetFilename(handles);
 if (exist(filename) == 2)
 button=questdlg('This file exists! \nAre you sure want to overwrite it?');
 else
 button = 'Yes';
 end
 if (button == 'Yes')

 if (exist(directory) == 7)
 imwrite(g_video(:,:,1,a),filename,'bmp');
 else
 mkdir(directory);
 imwrite(g_video(:,:,1,a),filename,'bmp');
 end
 fid=fopen(sprintf('%s%s',IRIS_ROOT,IRIS_DB),'a');

imageinfo=sprintf('%s,%s,%s,%s,%s,%s,%s,%s',Subject,Eye,Sex,Age,Color,Details,Angle,filen
ame);
 fprintf(fid,'%s\n',imageinfo);
 fclose(fid);
 set(handles.FileName,'String',imageinfo);
 end
 NextImage_Callback(hObject, eventdata, handles)
end

% --- Executes on button press in CaptureVideo.
function CaptureVideo_Callback(hObject, eventdata, handles)
% hObject handle to CaptureVideo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global FRAMES_PER_TRIGGER

73

global PERIOD;
global ACTUAL_FRAME_RATE
global DESIRED_FRAME_RATE
global g_vidObjects;
global g_drivers;
global g_video;
% FPS = 10, save single files as bmps. increment counter, both eyes
% with/without glasses contacts if available. distinguish filename by
% N - Normal eye, G - Glasses C - Contacts
DeviceList=get(handles.DeviceList);
vidObj=g_vidObjects(DeviceList.Value);
oldFramesPerTrigger=get(vidObj,'FramesPerTrigger');
set(vidObj,'FramesPerTrigger',FRAMES_PER_TRIGGER);
oldGrabInterval=get(vidObj,'FrameGrabInterval');
set(vidObj,'FrameGrabInterval',ACTUAL_FRAME_RATE/DESIRED_FRAME_RATE);
start(vidObj);
%index=floor(linspace(1,FRAMES_PER_TRIGGER*ACTUAL_FRAME_RATE/DESIRED_F
RAME_RATE,FRAMES_PER_TRIGGER))
[g_video,t]=getdata(vidObj);
%g_video=g_video_tmp(:,:,:,index); % subsample (sort of)
imaqmontage(g_video);
stop(vidObj);
% Restore old settings.
set(vidObj,'FrameGrabInterval',oldGrabInterval);
set(vidObj,'FramesPerTrigger',oldFramesPerTrigger);

74

Appendix C: Experimental Data

Experiment 1: Orthogonal Enrollment Templates
 Percent Accuracy
Rank 0° 15° 30° 45° All

1 61.2368 18.3284 10.8025 5.2482 23.6471
2 67.1192 25.0733 17.1296 9.5035 29.4292
3 69.3816 30.6452 20.8333 12.1986 32.9874
4 70.8899 34.8974 24.2284 13.9007 35.6931
5 72.6998 37.2434 27.7778 16.4539 38.2506
6 73.6048 38.4164 30.0926 18.156 39.7702
7 74.6606 39.8827 31.9444 20 41.3269
8 75.264 41.6422 34.8765 22.5532 43.2913
9 76.3198 43.4018 38.2716 24.539 45.3299

10 76.4706 45.0147 39.6605 26.6667 46.6642
11 77.2247 46.3343 41.2037 29.2199 48.2209
12 77.9789 48.2405 43.2099 30.7801 49.7776
13 79.1855 49.7067 43.9815 32.766 51.149
14 79.7888 51.3196 45.216 35.0355 52.5945
15 80.2413 53.0792 46.4506 36.8794 53.9288
16 80.2413 54.3988 48.1481 38.4397 55.0778
17 81.5988 56.0117 49.537 39.8582 56.5234
18 82.0513 57.1848 50.3086 40.8511 57.3758
19 83.1071 58.5044 50.9259 41.7021 58.3395
20 83.2579 59.5308 51.5432 42.9787 59.1179
21 83.5596 60.9971 52.4691 44.1135 60.0815
22 83.8612 61.7302 54.1667 44.9645 60.9711
23 84.0121 62.61 55.4012 45.8156 61.7494
24 84.4646 63.3431 56.4815 46.8085 62.5649
25 84.7662 63.4897 57.0988 47.3759 62.9726
26 85.0679 63.9296 57.2531 48.227 63.4173
27 85.0679 65.5425 58.179 49.2199 64.3069
28 85.3695 66.2757 59.2593 49.6454 64.937
29 85.6712 66.5689 60.3395 50.3546 65.53
30 86.1237 67.1554 60.9568 51.2057 66.1601
31 86.2745 68.0352 61.4198 51.9149 66.7161
32 86.5762 68.3284 61.8827 52.766 67.1979
33 86.5762 69.0616 62.963 53.7589 67.9021
34 86.8778 69.5015 64.0432 54.7518 68.6064
35 87.1795 69.7947 64.6605 55.1773 69.0141
36 87.3303 70.2346 65.1235 55.8865 69.4589
37 87.4811 70.3812 65.7407 56.5957 69.8666
38 87.7828 70.5279 65.8951 57.4468 70.2372
39 88.0845 71.261 66.358 58.0142 70.7561
40 88.2353 71.8475 66.5123 58.7234 71.1638
41 88.3861 72.1408 66.6667 59.7163 71.5715
42 88.537 72.2874 67.4383 59.8582 71.8681
43 88.8386 72.7273 68.5185 60.5674 72.4981
44 89.1403 72.8739 70.0617 60.5674 72.98
45 89.1403 73.1672 70.8333 60.8511 73.3136
46 89.2911 73.3138 71.7593 61.7021 73.8325
47 89.2911 73.4604 72.2222 62.2695 74.129
48 89.5928 73.7537 72.5309 63.1206 74.5738
49 89.5928 74.0469 73.1481 63.5461 74.9073
50 89.5928 74.9267 73.6111 63.6879 75.278

75

Experiment 2: 15° Enrollment Templates

 Percent Accuracy
Rank 0° 15° 30° 45° All

1 18.2504 65.5425 14.3519 4.8227 25.7598
2 27.3002 71.8475 23.3025 11.3475 33.4322
3 35.4449 74.3402 27.4691 14.1844 37.8058
4 39.3665 75.6598 33.9506 16.3121 41.2157
5 43.8914 76.2463 37.3457 18.4397 43.8473
6 47.0588 76.9795 41.2037 21.1348 46.4418
7 50.6787 78.8856 44.2901 23.8298 49.2587
8 53.2428 79.7654 47.5309 25.5319 51.3343
9 55.2036 80.3519 50.6173 27.234 53.1505

10 56.5611 80.6452 51.6975 29.6454 54.4477
11 57.9186 80.7918 53.5494 32.0567 55.8933
12 59.1252 81.6716 55.5556 33.0496 57.1534
13 60.181 81.8182 57.5617 35.7447 58.636
14 60.9351 81.9648 60.0309 37.7305 59.9703
15 62.5943 82.2581 60.1852 39.5745 60.9711
16 64.2534 82.2581 60.9568 41.1348 61.9718
17 65.1584 82.4047 62.3457 41.844 62.7502
18 65.7617 82.8446 63.1173 42.8369 63.4544
19 66.5158 83.1378 63.8889 44.2553 64.2698
20 67.4208 83.4311 64.8148 45.2482 65.0482
21 68.175 83.4311 66.0494 46.6667 65.9007
22 69.6833 83.5777 66.9753 48.6525 67.0497
23 70.2866 83.7243 67.5926 49.3617 67.5686
24 70.4374 84.0176 67.9012 50.6383 68.0875
25 71.0407 84.1642 69.1358 51.3475 68.7546
26 72.3982 84.4575 69.7531 52.0567 69.4959
27 73.0015 84.7507 69.9074 53.0496 70.0148
28 73.7557 84.8974 70.216 53.9007 70.5337
29 74.0573 85.044 70.679 54.3262 70.8673
30 74.359 85.3372 70.8333 55.461 71.3491
31 74.8115 85.4839 71.6049 55.6028 71.7198
32 74.8115 85.6305 72.0679 56.1702 72.0163
33 75.1131 85.7771 72.2222 56.3121 72.2016
34 75.5656 86.0704 72.5309 57.0213 72.6464
35 76.0181 86.217 72.6852 57.4468 72.9429
36 76.0181 86.3636 73.3025 57.7305 73.2024
37 76.1689 86.3636 73.9198 57.7305 73.3877
38 76.1689 86.6569 74.0741 58.2979 73.6471
39 76.3198 86.9501 74.3827 58.7234 73.9437
40 76.3198 87.0968 74.6914 59.8582 74.3514
41 76.3198 87.2434 74.8457 60.2837 74.5367
42 77.0739 87.2434 75.3086 60.5674 74.9073
43 77.2247 87.39 76.0802 60.9929 75.278
44 77.5264 87.8299 76.3889 61.7021 75.7228
45 77.5264 88.1232 76.5432 62.2695 75.9822
46 78.2805 88.2698 76.6975 62.4113 76.2787
47 78.733 88.2698 77.1605 62.5532 76.5382
48 78.733 88.2698 77.6235 62.9787 76.7606
49 78.733 88.2698 77.7778 63.2624 76.8718
50 78.733 88.4164 77.9321 63.8298 77.0941

76

Experiment 3: 30° Enrollment Templates

 Percent Accuracy
Rank 0° 15° 30° 45° All

1 12.0664 17.1554 63.2716 13.4752 26.0193
2 18.0995 24.7801 67.9012 18.8652 31.9496
3 24.2836 29.7654 69.9074 22.1277 36.0638
4 28.9593 34.0176 72.2222 25.1064 39.6219
5 31.9759 36.9501 73.7654 27.0922 41.9941
6 34.8416 39.5894 75.1543 28.9362 44.1809
7 37.7074 41.0557 76.3889 31.6312 46.2565
8 40.1207 43.5484 77.6235 35.0355 48.6657
9 41.9306 46.0411 78.5494 36.5957 50.3706

10 43.5897 49.2669 79.6296 38.4397 52.3351
11 44.9472 51.6129 80.5556 41.2766 54.2254
12 47.0588 53.2258 81.4815 43.4043 55.9303
13 48.4163 54.9853 82.0988 44.9645 57.2646
14 50.0754 56.5982 82.716 46.2411 58.5619
15 52.3379 57.6246 83.179 48.227 60.0074
16 52.7903 59.9707 83.3333 50.3546 61.3047
17 53.6953 61.1437 84.1049 52.0567 62.4537
18 54.7511 61.8768 84.4136 53.3333 63.3062
19 55.6561 63.6364 84.7222 55.0355 64.4922
20 56.2594 64.5161 85.1852 55.8865 65.1964
21 57.1644 65.5425 85.6481 56.5957 65.9748
22 58.8235 66.5689 86.8827 57.4468 67.1609
23 59.4268 68.0352 87.3457 58.7234 68.1245
24 60.3318 68.7683 87.963 60.2837 69.0882
25 61.086 69.3548 88.1173 61.1348 69.6812
26 61.6893 69.9413 88.7346 62.2695 70.4225
27 62.8959 70.5279 89.1975 63.5461 71.3121
28 63.4992 70.8211 89.5062 64.3972 71.831
29 63.9517 71.4076 90.1235 64.9645 72.387
30 65.9125 71.8475 90.1235 65.5319 73.1282
31 66.6667 73.1672 90.8951 66.6667 74.129
32 67.5716 74.1935 90.8951 68.0851 74.9815
33 68.4766 74.9267 90.8951 68.5106 75.5004
34 69.6833 75.5132 90.8951 69.6454 76.2417
35 70.7391 76.2463 91.0494 70.0709 76.8347
36 71.9457 76.6862 91.2037 70.4965 77.3907
37 73.1523 76.9795 91.5123 71.3475 78.0578
38 73.9065 77.566 91.9753 72.0567 78.6879
39 74.9623 77.8592 92.284 72.3404 79.1698
40 76.0181 78.4457 92.4383 72.9078 79.7628
41 76.7722 78.8856 92.5926 73.617 80.2817
42 78.2805 79.3255 92.7469 73.7589 80.8377
43 79.3363 79.6188 93.0556 74.0426 81.3195
44 79.638 79.912 93.2099 74.4681 81.616
45 80.0905 79.912 93.2099 75.0355 81.8755
46 80.3922 80.2053 93.2099 75.6028 82.172
47 80.8446 80.3519 93.2099 76.1702 82.4685
48 80.9955 80.4985 93.3642 76.3121 82.6168
49 81.9005 80.7918 93.5185 77.0213 83.1357
50 82.5038 80.7918 93.5185 77.4468 83.3951

77

Experiment 4: 45° Enrollment Templates

 Percent Accuracy
Rank 0° 15° 30° 45° All

1 6.0332 9.3842 10.9568 49.7872 19.4959
2 12.6697 14.8094 16.9753 56.8794 25.7969
3 17.3454 18.0352 23.4568 60.8511 30.3558
4 21.1161 20.6745 26.3889 64.8227 33.6916
5 24.4344 24.4868 30.2469 67.5177 37.1016
6 26.546 28.0059 34.2593 69.5035 39.9926
7 29.1101 31.3783 37.3457 69.9291 42.3277
8 31.0709 33.2845 40.2778 72.0567 44.5515
9 33.9367 36.9501 42.9012 73.3333 47.146

10 35.5958 40.0293 44.4444 74.1844 48.9251
11 37.1041 42.6686 46.142 75.3191 50.6672
12 39.5173 45.0147 47.9938 76.1702 52.5204
13 41.0256 47.3607 50 77.0213 54.1883
14 43.1373 48.9736 50.7716 77.7305 55.4855
15 43.7406 50.2933 53.5494 79.4326 57.0793
16 45.3997 51.6129 55.8642 79.8582 58.4878
17 47.0588 53.5191 57.716 80.2837 59.9333
18 48.2655 55.132 58.7963 81.1348 61.1193
19 49.1704 55.8651 59.5679 81.9858 61.9348
20 49.9246 57.0381 60.1852 82.4113 62.6761
21 51.1312 58.0645 61.5741 83.4043 63.8251
22 52.3379 58.5044 62.963 83.5461 64.6034
23 54.6003 60.4106 64.6605 83.5461 66.0489
24 56.4103 61.2903 65.8951 84.3972 67.235
25 57.7677 61.8768 67.284 85.1064 68.2357
26 59.276 62.9032 67.7469 85.8156 69.1623
27 60.6335 63.6364 68.3642 86.0993 69.9036
28 61.086 64.0762 69.2901 86.6667 70.4967
29 61.991 64.956 70.5247 87.0922 71.3491
30 62.4434 65.8358 70.9877 87.0922 71.7939
31 63.8009 66.2757 71.4506 87.5177 72.4611
32 65.1584 66.4223 72.3765 87.8014 73.1282
33 65.9125 66.8622 72.8395 88.0851 73.6101
34 66.365 67.3021 73.4568 88.3688 74.0549
35 66.8175 67.7419 73.6111 88.9362 74.4626
36 67.5716 68.0352 74.537 89.078 74.9815
37 68.9291 68.6217 74.8457 89.9291 75.7598
38 70.5882 68.7683 75.9259 90.0709 76.5011
39 70.7391 69.5015 76.8519 90.6383 77.0941
40 71.644 70.2346 77.0062 90.7801 77.576
41 72.549 70.3812 77.6235 91.0638 78.0578
42 72.6998 70.5279 78.0864 91.3475 78.3173
43 73.1523 70.9677 78.2407 91.4894 78.6138
44 73.9065 71.4076 78.7037 91.773 79.0956
45 74.2081 71.8475 78.858 92.0567 79.3921
46 74.6606 72.1408 79.0123 92.1986 79.6516
47 74.9623 72.2874 79.4753 92.4823 79.9481
48 74.9623 72.7273 80.0926 92.6241 80.2446
49 75.4148 73.3138 80.2469 92.6241 80.5411
50 75.8673 74.4868 80.7099 92.6241 81.06

78

Experiment 5: Mixed Enrollment Templates

 Percent Accuracy
Rank 0° 15° 30° 45° All

1 29.5626 39.7361 37.1914 21.5603 31.8755
2 41.3273 51.0264 47.2222 30.6383 42.4018
3 46.908 56.1584 52.4691 35.461 47.5908
4 52.3379 62.3167 56.6358 40.5674 52.8169
5 55.2036 65.2493 59.4136 46.383 56.4492
6 58.6727 69.7947 61.1111 48.6525 59.4514
7 60.9351 73.0205 64.3519 51.9149 62.4537
8 64.4042 74.6334 67.284 54.7518 65.1594
9 66.5158 75.5132 69.2901 56.1702 66.7532

10 68.3258 76.9795 71.142 58.2979 68.5693
11 70.2866 78.1525 72.9938 60.2837 70.3113
12 72.0965 79.912 74.2284 61.9858 71.9422
13 74.5098 81.5249 75.463 63.9716 73.7583
14 75.5656 82.5513 76.3889 65.8156 74.9815
15 75.8673 84.1642 77.6235 66.8085 76.0193
16 76.9231 85.3372 78.5494 68.6525 77.2795
17 78.4314 86.8035 79.9383 69.9291 78.6879
18 78.8839 87.5367 81.0185 70.7801 79.4663
19 79.9397 88.563 82.0988 71.9149 80.5411
20 80.8446 89.2962 82.716 72.766 81.3195
21 81.9005 90.6158 83.4877 74.1844 82.4685
22 82.8054 91.7889 84.5679 76.0284 83.7287
23 84.0121 92.3754 85.6481 76.7376 84.6182
24 84.1629 92.8152 86.4198 77.5887 85.1742
25 84.7662 93.2551 86.8827 78.0142 85.656
26 85.0679 93.2551 87.1914 78.7234 85.9896
27 85.822 93.4018 87.6543 79.5745 86.5456
28 86.1237 93.4018 88.2716 80.7092 87.0645
29 86.727 93.8416 88.7346 81.844 87.7317
30 87.1795 93.8416 89.6605 82.4113 88.2135
31 87.3303 93.9883 89.6605 82.9787 88.4359
32 87.7828 94.1349 90.1235 83.1206 88.7324
33 88.537 94.2815 90.4321 83.5461 89.1401
34 88.8386 94.2815 91.0494 84.3972 89.5849
35 89.1403 94.5748 91.5123 85.1064 90.0297
36 89.5928 94.5748 91.9753 85.5319 90.3632
37 89.8944 94.868 92.284 86.5248 90.8451
38 90.6486 95.4545 92.4383 87.0922 91.364
39 90.9502 95.7478 93.2099 87.3759 91.7717
40 90.9502 96.0411 93.6728 87.3759 91.957
41 91.2519 96.1877 93.6728 87.5177 92.1053
42 91.7044 96.6276 93.8272 87.9433 92.4759
43 92.006 97.0674 94.1358 88.5106 92.8836
44 92.3077 97.5073 94.2901 88.7943 93.1801
45 92.7602 97.5073 94.4444 89.7872 93.5878
46 92.7602 97.5073 94.5988 89.9291 93.662
47 93.2127 97.5073 94.9074 90.6383 94.0326
48 93.5143 97.5073 95.0617 91.4894 94.3662
49 93.6652 97.654 95.679 91.773 94.6627
50 94.1176 97.654 95.8333 92.0567 94.8851

79

Appendix D: Publications

1. Ruth M. Gaunt, “Collection of Non-Orthogonal Iris Images for Iris Recognition,”
2006 National Conference on Undergraduate Research (6-8 April 2006).

2. Robert.W Ives, Lauren Kennell, Ruth M. Gaunt, D.M. Etter, “Iris Segmentation for

Recognition Using Local Statistics,” ”, IEEE 39th Annual Asilomar Conference on
Signals, Systems, and Computers, Nov. 2005.

80

Proceedings of the National Conference
On Undergraduate Research (NCUR) 2006

The University of North Carolina at Asheville
Asheville, North Carolina

April 6-8, 2006

Collection of Non-Orthogonal Iris Images for Iris Recognition

Ruth Gaunt

Electrical Engineering Department
United States Naval Academy

105 Maryland Avenue
Annapolis, MD 21402-5025. USA

Faculty Advisors: R.W. Ives, D.M. Etter

Abstract

Despite its high recognition rate, one of iris recognition’s major weaknesses is that it requires that the users be fully
cooperative when it comes to making sure their eye is close enough to the camera and is still enough for a high
quality iris image to be collected. Current commercial systems require the iris to be orthogonal (looking directly into
the camera) since their recognition algorithm must first detect the pupil, which is assumed to be a circle. This is
only the case if the eye is looking directly at the camera lens. This makes it difficult or impossible for identification
to occur if the image is taken from a non-orthogonal angle. A non-orthogonal iris image is defined as an image
where the iris is not looking directly into the camera. This research involves devising a method to collect and
organize a database of non-orthogonal iris images. The non-orthogonal iris image collection station allows iris
images to be obtained at 0° (orthogonal), 15°, 30°, and 45° for each eye. The results of this research will aid in the
development of an algorithm that can use non-orthogonal images for iris recognition.

1. Introduction

Biometrics is the study of the individual physical traits of a person that can be quantified and used for identification.
Examples of different types of biometrics include fingerprints, hand geometry, face, voice, and iris. These
quantifiable features are measured and stored in a database to be used for automatic recognition. The increased use
of biometrics as a method for human identification has led to a decreased need for personal identification numbers
(PIN) and passwords, which are easily spoofed. Using biometrics (such as the iris) leads to increased confidence
that “imposters” do not gain access to resources, systems, or information that they are not authorized to access.
 The iris is the colored portion of the eye that surrounds the pupil and controls the amount of light that enters the
eye. It is the only internal human organ that can be observed in the external environment and is made up of tissue
that lies behind the cornea [1]. Iris tissue patterns are formed as a part of fetal development, which involves random
tearing of the iris tissue. Because iris patterns are not affected by genetics, no two people share the same iris
patterns. In fact, the right and left eyes of a single person have different patterns [1]. By the time a person reaches
one year of age, iris patterns have stabilized and will stay the same for a lifetime, excluding any major eye injuries
or disease that may occur [1]. Iris recognition algorithms quantify these highly variable patterns and use them for
identification.
 Verification and identification are the two most common applications of biometric systems, including iris
recognition. Verification is a one-to-one match, meaning, for example, that an individual enters a PIN while
presenting a biometric, such as a fingerprint or iris, at the same time [2]. A positive match occurs if the person
whose biometric data is presented matches the person whose PIN was entered. Identification, on the other hand, is a
one-to-many match [2]. For example, this means that an individual who wants to gain access to a secure location

81

looks directly into an iris camera, and his or her iris patterns are compared to all of the iris patterns in a given
database to check for a positive match. If the individual’s iris patterns meet a certain threshold, identification occurs
and access is granted.
 One other application of biometric technology, which is a much more difficult problem, involves a many-to-many
search, also referred to as a “watchlist” [2]. In this scenario, a large area such as an airport is scanned in order to
check for individuals of interest (i.e. terrorists and felons). The biometric information of these individuals is stored
in a database known as a watchlist, and all individuals who pass a given checkpoint have their biometric data
collected and compared to the watchlist, typically under covert conditions. The typically large size of these
databases as well as the covert collection conditions make this a complex problem to solve.
 This project helps to address the problem of covert iris recognition. Even though iris recognition has a very high
identification rate, one of its major drawbacks is that it requires the user to be fully cooperative when it comes to
making sure that the eye is close enough to the camera and still enough to have a clear image captured. Near-
infrared (NIR) cameras are used in iris recognition because iris patterns stand out more under NIR illumination (790
nm). Current commercial recognition systems require the user to stare straight into the camera so that an orthogonal
image is captured. Orthogonal iris capture is necessary because recognition algorithms typically must first detect the
inner (pupillary) and outer (limbic) boundaries of the iris, which are most often assumed to be circles, and this is
only true when the subject is staring directly into the camera lens. This means that in covert situations where
subjects are not staring directly into a camera (non-orthogonal), identification cannot occur because the pupillary
and limbic boundaries of the iris are now ellipses instead of circles and cannot be detected (Figure 1). The main
purpose of this research is to develop a database of non-orthogonal iris images taken from four known angles to aid
in the development and testing of non-orthogonal iris recognition algorithms.

Figure 1. Non-orthogonal iris image.

2. Methodology

In order to provide for the accurate collection of non-orthogonal iris images at known orientation angles, a collection
station was built that allows the user’s head to remain stationary throughout the collection process. The iris camera
moves around the user’s head on a track (Figure 2). The database of non-orthogonal iris images contains images
taken at four known orientation angles: 0° (orthogonal), 15°, 30°, and 45°. First, the user places his or her chin in
the chin rest so that the head remains in one place. The chin rest can be raised or lowered so that no matter what the
proportions of a person’s face are, the eye can always be positioned to be in the center of the camera lens. There are
two thin metal rods at the opposite end of the collection station for the user to focus on so that the only angle
variation that occurs during the collection process comes from changes in camera position and not the shifting of the
users’ eyes in the sockets. The camera is on a raised platform that moves on a track. It is held in place by a pin that
fits into holes placed at the desired collection angles for each eye. In addition, the collection station was constructed
so that the distance from the camera to the eye is five inches, which is the desirable distance for achieving an

82

optimal level of focus so that enough iris pattern information is available in each image. The high-quality near-
infrared camera that is used is the LG IrisAccess® 3000 entry control system.

Figure 2. Non-orthogonal iris image collection station.

 An existing USNA iris collection graphical user interface (GUI) was altered so that information such as the angle
at which the image is obtained is stored along with other information about the individual when the iris image is
saved (Figure 3). This information includes user subject number, which eye is being collected (right or left), gender,
iris color, iris age, and whether the individual is wearing glasses, contacts, and if the user has a history of eye trauma
or eye surgery [3]. For purposes of this research, users are instructed to remove their glasses so that changes in iris
patterns due to optical distortion by glass lenses is not a variable.

Figure 3. Graphical user interface for iris collection.

83

 The iris camera is used in conjunction with the MATLAB Image Acquisition and Image Processing Toolboxes and
the Matrox Meteor II frame grabber to collect the data [3]. Nine frames of video are grabbed at a time, and all nine
images are saved. This means that for each eye, thirty-six images are obtained, since there are four different
orientation angles and nine images are saved for each of these four angles. Figure 4 shows examples of images from
each of the four orientation angles.

Figure 4. Database images from each non-orthogonal angle.

3. Data

Data for approximately ninety irises are stored in the non-orthogonal database. These irises were collected at each
non-orthogonal angle, and about sixty of those went through two collections over the course of a semester resulting
in a database of almost 5000 images.
 After collection, the database images were run through an existing non-orthogonal iris segmentation algorithm that
outputs the parameters of elliptical boundaries of the pupillary and limbic boundaries, including the centroid, semi-
major axis, and semi-minor axis [4]. To assess the accuracy of collection at each non-orthogonal angle, the ratio of
the semi-major axis to semi-minor axis of the pupillary boundary was calculated for each subject eye. Since the
eccentricity of the pupillary boundary increases as the non-orthogonal imaging angle increases, the ratio of semi-
major axis to semi-minor axis of the pupillary boundary should increase as well. Table 1 displays the mean ratio and
standard deviation for each non-orthogonal angle. Images taken from an angle of zero degrees (orthogonal images)
have the smallest mean ratio of 1.085. This is to be expected because the entire iris can be seen in the image, and in
general, the limbic and pupillary boundaries of irises are approximately circular, which would translate to equal

0° (Orthogonal) 15°

30° 45°

84

semi-major and semi-minor axes (ratio = 1.0). As the non-orthogonal imaging angle increases, the visible iris
boundaries become more and more elliptical, and at an angle of 45°, the mean ratio was 1.3668.
 Figure 5 shows a histogram of the semi-major axis/semi-minor axis ratio values for images collected at the four
different angles. This graph shows that there is much overlap between the different non-orthogonal angles. In fact,
the orthogonal and 15° degree images are virtually indistinguishable. Despite the overlap, the peak ratios for the 30°
and 45° iris images are at increasingly higher ratios, which is expected.

Database Collection Analysis

Angle
Mean
Ratio

Standard
Deviation

0° 1.085 0.3861
15° 1.1157 0.375
30° 1.2147 0.3492
45° 1.3668 0.4227

Table 1. Iris data used for database analysis.

Figure 5. Analysis of non-orthogonal iris image database.

4. Conclusion

One of the difficulties with biometrics research is finding enough data, such as iris images, for testing. In the case of
non-orthogonal iris recognition, there are presently only a few databases of non-orthogonal iris images, which make
it difficult to develop robust recognition algorithms. This research has successfully produced a database of almost
5000 images.
 The variations in collection results displayed by the ratios of semi-major axis to semi-minor axis may have
occurred for three reasons. First, even though the subject is instructed to stare straight ahead during the collection

85

process and has visual aids at which to stare, there is no guarantee that the person was looking straight ahead at the
instant the images were captured. In addition, the performance of the segmentation algorithm that finds the
parameters of the elliptical iris boundaries is not perfect, and the true location of the boundaries is subjective
anyway. In addition, non-orthogonal iris images are not perfect ellipses because human iris shapes are not always
perfectly circular, even in orthogonal images.

5. Acknowledgements

The author wishes to express her appreciation to:
 Dr. Robert Ives, Electrical Engineering Department, USNA – Primary Project Adviser
 Dr. Delores Etter, Electrical Engineering Department, USNA –Secondary Project Adviser
 Dr. Lauren Kennell, Electrical Engineering Department, USNA-Research Asst. Professor
 LT Robert Schultz, USN, Electrical Engineering Department, USNA
 Mr. Jerry Ballman, Electrical Engineering Department, USNA- Laboratory Technician
 Mr. Michael Wilson, Electrical Engineering Department, USNA – Laboratory Technician

6. References

[1] Y. Du, R. W. Ives, and D. M. Etter, "Iris Recognition", The Electrical Engineering Handbook, 3rd Edition, Boca
Raton, FL: CRC Press, 2004 (in press).
[2] Y. Du, R. W. Ives, D. M. Etter, T. B. Welch, and C.-I Chang, "One Dimensional Approach to Iris Recognition",
Proceedings of the SPIE, pp. 237-247, Apr., 2004.
[3] R. Schultz, R.W. Ives and D.M. Etter, “Biometric Data Acquisition using MATLAB GUIs,” IEEE Frontiers in
Education 2005, Oct. 2005.
[4] B. Bonney, “Non-Orthogonal Iris Localization,” Final Trident Report Apr. 2005.

7. Works Consulted

1. Calvert, J.B. “Ellipse,” Dr. James B. Calvert. 31 May 2005.
 <http://www.du.edu/~jcalvert/math/ellipse.htm>.

2. Daugman, John. How Iris Recognition Works. 25 Oct 2003. <www.cl.cam.ac.uk/users/jgd1000/irisrecog.pdf>.

3. Y. Du, B. Bonney, R.W. Ives, D.M. Etter and R. Schultz, “Partial Iris Recognition using a 1-D Approach:
 Statistics and Analysis,” 2005 IEEE International Conference on Acoustics, Speech and Signal Processing,
 Philadelphia, Mar 2005.

4. Y. Du, R.W. Ives, R. Schultz and D.M. Etter, “Analysis of Partial Iris Recognition,” 2005 SPIE Defense and
 Security Symposium, Orlando, FL, Mar-Apr 2005.

5. Weisstein, Eric W. "Ellipse." From MathWorld--A Wolfram Web Resource. 24 May 2005.
 <http://mathworld.wolfram.com/Ellipse.html>

86

87

88

89

90

